• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

结合用户长短期兴趣与事件影响力的事件推荐策略

钱忠胜, 杨家秀, 李端明, 叶祖铼

钱忠胜, 杨家秀, 李端明, 叶祖铼. 结合用户长短期兴趣与事件影响力的事件推荐策略[J]. 计算机研究与发展, 2022, 59(12): 2803-2815. DOI: 10.7544/issn1000-1239.20210693
引用本文: 钱忠胜, 杨家秀, 李端明, 叶祖铼. 结合用户长短期兴趣与事件影响力的事件推荐策略[J]. 计算机研究与发展, 2022, 59(12): 2803-2815. DOI: 10.7544/issn1000-1239.20210693
Qian Zhongsheng, Yang Jiaxiu, Li Duanming, Ye Zulai. Event Recommendation Strategy Combining User Long-Short Term Interest and vent Influence[J]. Journal of Computer Research and Development, 2022, 59(12): 2803-2815. DOI: 10.7544/issn1000-1239.20210693
Citation: Qian Zhongsheng, Yang Jiaxiu, Li Duanming, Ye Zulai. Event Recommendation Strategy Combining User Long-Short Term Interest and vent Influence[J]. Journal of Computer Research and Development, 2022, 59(12): 2803-2815. DOI: 10.7544/issn1000-1239.20210693
钱忠胜, 杨家秀, 李端明, 叶祖铼. 结合用户长短期兴趣与事件影响力的事件推荐策略[J]. 计算机研究与发展, 2022, 59(12): 2803-2815. CSTR: 32373.14.issn1000-1239.20210693
引用本文: 钱忠胜, 杨家秀, 李端明, 叶祖铼. 结合用户长短期兴趣与事件影响力的事件推荐策略[J]. 计算机研究与发展, 2022, 59(12): 2803-2815. CSTR: 32373.14.issn1000-1239.20210693
Qian Zhongsheng, Yang Jiaxiu, Li Duanming, Ye Zulai. Event Recommendation Strategy Combining User Long-Short Term Interest and vent Influence[J]. Journal of Computer Research and Development, 2022, 59(12): 2803-2815. CSTR: 32373.14.issn1000-1239.20210693
Citation: Qian Zhongsheng, Yang Jiaxiu, Li Duanming, Ye Zulai. Event Recommendation Strategy Combining User Long-Short Term Interest and vent Influence[J]. Journal of Computer Research and Development, 2022, 59(12): 2803-2815. CSTR: 32373.14.issn1000-1239.20210693

结合用户长短期兴趣与事件影响力的事件推荐策略

基金项目: 国家自然科学基金项目(62262025,61762041);江西省自然科学基金项目(20181BAB202009)
详细信息
  • 中图分类号: TP391

Event Recommendation Strategy Combining User Long-Short Term Interest and vent Influence

Funds: This work was supported by the National Natural Science Foundation of China (62262025, 61762041) and the Natural Science Foundation of Jiangxi Province (20181BAB202009).
  • 摘要: 事件社交网络的快速发展引起的信息过载问题是当前面临的主要挑战,深度学习等技术可从大量的数据中挖掘潜在的关联信息,从而有效应对该问题.同时,有研究表明用户兴趣在长期和短期的时序上具有不同的特征模式,深度挖掘用户的时序特征和兴趣可有效地为用户提供个性化的事件推荐信息.基于此,提出一种将用户长短期兴趣与事件影响力相结合的推荐策略.通过带注意力机制的图神经网络和长短期记忆网络获取用户的长短期兴趣,同时,对候选事件构建针对目标用户的影响力.根据用户长短期兴趣和事件影响力预测目标用户的参与概率,最终通过排序后的参与概率向用户推荐TOP-K兴趣事件.实验结果表明,所提推荐模型在多个指标上均有所改善,其推荐性能优于已有对比模型,具备很好的推荐效果.
    Abstract: The problem of information overload caused by the rapid development of event-based social network is the main challenge currently. Those technologies such as deep learning can mine potential relationship from a large amount of data to effectively cope with this problem. At the same time, some studies show that user interests have different characteristic patterns in long-term time series and short-term time series. In-depth mining of users’ time series characteristics and interests can effectively provide users with personalized event recommendation information. Based on this, a recommendation strategy is proposed, which combines long-short term user interests with event influences. It obtains the long-short term user interests by graph neural network and long-short term memory network together with attention mechanism. At the same time, it constructs the influence on the target user for candidate events, and predicts the participation probability of the target user based on the long-short term interests and event influences. Finally, TOP-K events are recommended to the users according to the sorted participation probability. The experimental results show that the proposed recommendation model has been improved on multiple indicators. Its recommendation performance is better than the several existing compared models, and it has a good recommendation effect.
  • 期刊类型引用(9)

    1. 杨秀璋,彭国军,刘思德,田杨,李晨光,傅建明. 面向APT攻击的溯源和推理研究综述. 软件学报. 2025(01): 203-252 . 百度学术
    2. 马涛,杨峰,刘霞. 物联网技术在降低成本提高效率中的应用. 电子技术. 2024(01): 282-283 . 百度学术
    3. 万丽娟,笪枫. 电力监控系统的多源威胁情报分析. 电子技术. 2024(03): 248-249 . 百度学术
    4. 张进军,周锐. 基于多源数据分析的物联网智能跨层资源分配算法. 安徽电气工程职业技术学院学报. 2024(02): 73-81 . 百度学术
    5. 蒋伟进,李恩,罗田甜,周文颖,杨莹. 基于区块链和可信执行环境的细粒度访问控制方案研究与应用——以物联网为例. 系统工程理论与实践. 2024(07): 2394-2410 . 百度学术
    6. 陈泽恩. 物联网中多源异构数据安全漏洞检测技术研究. 物联网技术. 2024(09): 124-126 . 百度学术
    7. 武丹丹,陈捷,谢瑞云,陈轲. OntoCSD:基于本体的网络空间防御综合解决方案安全模型(英文). Frontiers of Information Technology & Electronic Engineering. 2024(09): 1209-1226 . 百度学术
    8. 刘奇旭,刘嘉熹,靳泽,刘心宇,肖聚鑫,陈艳辉,朱洪文,谭耀康. 基于人工智能的物联网恶意代码检测综述. 计算机研究与发展. 2023(10): 2234-2254 . 本站查看
    9. 杜文玲. 基于多源数据整合的大学生多级别心理压力智能预测方法. 赤峰学院学报(自然科学版). 2023(09): 74-77 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  213
  • HTML全文浏览量:  15
  • PDF下载量:  112
  • 被引次数: 18
出版历程
  • 发布日期:  2022-11-30

目录

    /

    返回文章
    返回