Event Recommendation Strategy Combining User Long-Short Term Interest and vent Influence
-
摘要: 事件社交网络的快速发展引起的信息过载问题是当前面临的主要挑战,深度学习等技术可从大量的数据中挖掘潜在的关联信息,从而有效应对该问题.同时,有研究表明用户兴趣在长期和短期的时序上具有不同的特征模式,深度挖掘用户的时序特征和兴趣可有效地为用户提供个性化的事件推荐信息.基于此,提出一种将用户长短期兴趣与事件影响力相结合的推荐策略.通过带注意力机制的图神经网络和长短期记忆网络获取用户的长短期兴趣,同时,对候选事件构建针对目标用户的影响力.根据用户长短期兴趣和事件影响力预测目标用户的参与概率,最终通过排序后的参与概率向用户推荐TOP-K兴趣事件.实验结果表明,所提推荐模型在多个指标上均有所改善,其推荐性能优于已有对比模型,具备很好的推荐效果.Abstract: The problem of information overload caused by the rapid development of event-based social network is the main challenge currently. Those technologies such as deep learning can mine potential relationship from a large amount of data to effectively cope with this problem. At the same time, some studies show that user interests have different characteristic patterns in long-term time series and short-term time series. In-depth mining of users’ time series characteristics and interests can effectively provide users with personalized event recommendation information. Based on this, a recommendation strategy is proposed, which combines long-short term user interests with event influences. It obtains the long-short term user interests by graph neural network and long-short term memory network together with attention mechanism. At the same time, it constructs the influence on the target user for candidate events, and predicts the participation probability of the target user based on the long-short term interests and event influences. Finally, TOP-K events are recommended to the users according to the sorted participation probability. The experimental results show that the proposed recommendation model has been improved on multiple indicators. Its recommendation performance is better than the several existing compared models, and it has a good recommendation effect.
-
-
期刊类型引用(8)
1. 吴树芳,高梦蛟,朱杰. 融合兴趣主题矩阵和主题生命树的社交用户长短兴趣挖掘. 情报理论与实践. 2024(02): 161-169 . 百度学术
2. 赵容梅,孙思雨,鄢凡力,彭舰,琚生根. 基于对比学习的多兴趣感知序列推荐系统. 计算机研究与发展. 2024(07): 1730-1740 . 本站查看
3. 刘鑫. 内容过滤技术与挖掘算法的设计优化. 电子技术. 2024(05): 42-43 . 百度学术
4. 张文龙,孙福振,吴相帅,李鹏程,王绍卿. 基于反向延长增强的对抗生成网络推荐算法. 计算机应用研究. 2024(07): 2033-2038 . 百度学术
5. 陈万志,王军. 时间感知增强的动态图神经网络序列推荐算法. 计算机工程与应用. 2024(20): 142-152 . 百度学术
6. 谢鸿博. 前后端分离架构下基于图神经网络的社交网络关系挖掘. 信息技术与信息化. 2024(12): 104-107 . 百度学术
7. 耿杰,刘春丽,魏雪梅,程明月,袁昆,李洋,刘业政. 基于用户重购行为的产品推荐方法. 计算机研究与发展. 2023(08): 1795-1807 . 本站查看
8. 李乃文,王胜男. 融合用户属性的虚拟学术社区用户画像模型构建研究. 情报探索. 2022(10): 85-90 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 211
- HTML全文浏览量: 15
- PDF下载量: 112
- 被引次数: 15