• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于双指导注意力网络的属性情感分析模型

谢珺, 王雨竹, 陈波, 张泽华, 刘琴

谢珺, 王雨竹, 陈波, 张泽华, 刘琴. 基于双指导注意力网络的属性情感分析模型[J]. 计算机研究与发展, 2022, 59(12): 2831-2843. DOI: 10.7544/issn1000-1239.20210708
引用本文: 谢珺, 王雨竹, 陈波, 张泽华, 刘琴. 基于双指导注意力网络的属性情感分析模型[J]. 计算机研究与发展, 2022, 59(12): 2831-2843. DOI: 10.7544/issn1000-1239.20210708
Xie Jun, Wang Yuzhu, Chen Bo, Zhang Zehua, Liu Qin. Aspect-Based Sentiment Analysis Model with Bi-Guide Attention Network[J]. Journal of Computer Research and Development, 2022, 59(12): 2831-2843. DOI: 10.7544/issn1000-1239.20210708
Citation: Xie Jun, Wang Yuzhu, Chen Bo, Zhang Zehua, Liu Qin. Aspect-Based Sentiment Analysis Model with Bi-Guide Attention Network[J]. Journal of Computer Research and Development, 2022, 59(12): 2831-2843. DOI: 10.7544/issn1000-1239.20210708
谢珺, 王雨竹, 陈波, 张泽华, 刘琴. 基于双指导注意力网络的属性情感分析模型[J]. 计算机研究与发展, 2022, 59(12): 2831-2843. CSTR: 32373.14.issn1000-1239.20210708
引用本文: 谢珺, 王雨竹, 陈波, 张泽华, 刘琴. 基于双指导注意力网络的属性情感分析模型[J]. 计算机研究与发展, 2022, 59(12): 2831-2843. CSTR: 32373.14.issn1000-1239.20210708
Xie Jun, Wang Yuzhu, Chen Bo, Zhang Zehua, Liu Qin. Aspect-Based Sentiment Analysis Model with Bi-Guide Attention Network[J]. Journal of Computer Research and Development, 2022, 59(12): 2831-2843. CSTR: 32373.14.issn1000-1239.20210708
Citation: Xie Jun, Wang Yuzhu, Chen Bo, Zhang Zehua, Liu Qin. Aspect-Based Sentiment Analysis Model with Bi-Guide Attention Network[J]. Journal of Computer Research and Development, 2022, 59(12): 2831-2843. CSTR: 32373.14.issn1000-1239.20210708

基于双指导注意力网络的属性情感分析模型

基金项目: 山西省回国留学人员科研资助项目(2020-040);山西省应用基础研究项目(201801D221190)
详细信息
  • 中图分类号: TP391

Aspect-Based Sentiment Analysis Model with Bi-Guide Attention Network

Funds: This work was supported by the Research Project of Shanxi Scholarship Council of China (2020-040) and the Applied Basic Research Project of Shanxi Province (201801D221190).
  • 摘要: 鉴于深度学习技术的不断发展,越来越多的研究者倾向于使用深度神经网络学习文本特征表示用于情感分析,其中序列模型(sequence models)和图神经网络(graph neural networks)已得到广泛的应用,并取得了不错的效果.然而,对于属性情感分类任务,属性对象与其他单词之间存在远距离的依赖关系,虽然序列型神经网络能捕获句子的上下文语义信息,但是对词语之间的远距离依赖关系无法进行有效学习;而图神经网络虽然可以通过图结构聚合更多的属性依赖信息,但会忽略有序词语间的上下文语义联系.因此结合双向长短时记忆网络(bi-directional long short-term memory, BiLSTM)和图卷积神经网络(graph convolutional network, GCN),提出一种基于双指导注意力网络(bi-guide attention network, BiG-AN)的属性情感分析模型.该模型通过交互指导注意力机制,同时关注到文本的上下文信息和远距离依赖信息,提高了模型对于文本属性级别情感特征的表示学习能力.在4个公开数据集Laptop,Rest14,Rest16,Twitter的实验结果表明,与其他几种基准模型相比,所提模型能够提取到更丰富的属性文本特征,有效提高属性情感分类的结果.
    Abstract: Due to the development of deep learning technology, an increasing number of researchers tend to use deep neural network to learn text feature representation for sentiment analysis, where sequence models and graph neural networks have been widely used and achieved good results. However, for aspect based sentiment analysis tasks, there is a long-distance dependency between aspect objects and other words. Although the sequential neural network can capture the contextual semantic information of sentences, the long-distance dependency between words cannot be effectively learned. Graph neural networks can aggregate more aspect-dependent information through graph structures, while ignoring contextual semantic relationships between ordered words. Thus an aspect-based sentiment analysis model named BiG-AN (bi-guide attention network) is proposed. The model combines the advantages of bi-directional long short-term memory (BiLSTM) and graph convolution network (GCN) to capture sentiment features at the aspect level of text, using interactively guiding attention mechanism to focus on contextual and long-distance dependency information in the sentence. The experimental results on four open-source datasets, including Laptop, Rest14, Rest16 and Twitter, show that the proposed model can extract richer aspect-based text features and effectively improve the results of aspect based sentiment classification compared with other benchmark models.
  • 期刊类型引用(9)

    1. 杨秀璋,彭国军,刘思德,田杨,李晨光,傅建明. 面向APT攻击的溯源和推理研究综述. 软件学报. 2025(01): 203-252 . 百度学术
    2. 马涛,杨峰,刘霞. 物联网技术在降低成本提高效率中的应用. 电子技术. 2024(01): 282-283 . 百度学术
    3. 万丽娟,笪枫. 电力监控系统的多源威胁情报分析. 电子技术. 2024(03): 248-249 . 百度学术
    4. 张进军,周锐. 基于多源数据分析的物联网智能跨层资源分配算法. 安徽电气工程职业技术学院学报. 2024(02): 73-81 . 百度学术
    5. 蒋伟进,李恩,罗田甜,周文颖,杨莹. 基于区块链和可信执行环境的细粒度访问控制方案研究与应用——以物联网为例. 系统工程理论与实践. 2024(07): 2394-2410 . 百度学术
    6. 陈泽恩. 物联网中多源异构数据安全漏洞检测技术研究. 物联网技术. 2024(09): 124-126 . 百度学术
    7. 武丹丹,陈捷,谢瑞云,陈轲. OntoCSD:基于本体的网络空间防御综合解决方案安全模型(英文). Frontiers of Information Technology & Electronic Engineering. 2024(09): 1209-1226 . 百度学术
    8. 刘奇旭,刘嘉熹,靳泽,刘心宇,肖聚鑫,陈艳辉,朱洪文,谭耀康. 基于人工智能的物联网恶意代码检测综述. 计算机研究与发展. 2023(10): 2234-2254 . 本站查看
    9. 杜文玲. 基于多源数据整合的大学生多级别心理压力智能预测方法. 赤峰学院学报(自然科学版). 2023(09): 74-77 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  239
  • HTML全文浏览量:  14
  • PDF下载量:  156
  • 被引次数: 18
出版历程
  • 发布日期:  2022-11-30

目录

    /

    返回文章
    返回