• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于深度强化学习的网约车动态路径规划

郑渤龙, 明岭峰, 胡琦, 方一向, 郑凯, 李国徽

郑渤龙, 明岭峰, 胡琦, 方一向, 郑凯, 李国徽. 基于深度强化学习的网约车动态路径规划[J]. 计算机研究与发展, 2022, 59(2): 329-341. DOI: 10.7544/issn1000-1239.20210905
引用本文: 郑渤龙, 明岭峰, 胡琦, 方一向, 郑凯, 李国徽. 基于深度强化学习的网约车动态路径规划[J]. 计算机研究与发展, 2022, 59(2): 329-341. DOI: 10.7544/issn1000-1239.20210905
Zheng Bolong, Ming Lingfeng, Hu Qi, Fang Yixiang, Zheng Kai, Li Guohui. Dynamic Ride-Hailing Route Planning Based on Deep Reinforcement Learning[J]. Journal of Computer Research and Development, 2022, 59(2): 329-341. DOI: 10.7544/issn1000-1239.20210905
Citation: Zheng Bolong, Ming Lingfeng, Hu Qi, Fang Yixiang, Zheng Kai, Li Guohui. Dynamic Ride-Hailing Route Planning Based on Deep Reinforcement Learning[J]. Journal of Computer Research and Development, 2022, 59(2): 329-341. DOI: 10.7544/issn1000-1239.20210905
郑渤龙, 明岭峰, 胡琦, 方一向, 郑凯, 李国徽. 基于深度强化学习的网约车动态路径规划[J]. 计算机研究与发展, 2022, 59(2): 329-341. CSTR: 32373.14.issn1000-1239.20210905
引用本文: 郑渤龙, 明岭峰, 胡琦, 方一向, 郑凯, 李国徽. 基于深度强化学习的网约车动态路径规划[J]. 计算机研究与发展, 2022, 59(2): 329-341. CSTR: 32373.14.issn1000-1239.20210905
Zheng Bolong, Ming Lingfeng, Hu Qi, Fang Yixiang, Zheng Kai, Li Guohui. Dynamic Ride-Hailing Route Planning Based on Deep Reinforcement Learning[J]. Journal of Computer Research and Development, 2022, 59(2): 329-341. CSTR: 32373.14.issn1000-1239.20210905
Citation: Zheng Bolong, Ming Lingfeng, Hu Qi, Fang Yixiang, Zheng Kai, Li Guohui. Dynamic Ride-Hailing Route Planning Based on Deep Reinforcement Learning[J]. Journal of Computer Research and Development, 2022, 59(2): 329-341. CSTR: 32373.14.issn1000-1239.20210905

基于深度强化学习的网约车动态路径规划

基金项目: 国家自然科学基金项目(61902134,62011530437);湖北省自然科学基金项目(2020CFB871);中央高校基本科研业务费专项资金(2019kfyXKJC021,2019kfyXJJS091)
详细信息
  • 中图分类号: TP399

Dynamic Ride-Hailing Route Planning Based on Deep Reinforcement Learning

Funds: This work was supported by the National Natural Science Foundation of China (61902134, 62011530437), Hubei Natural Science Foundation (2020CFB871), and the Fundamental Research Funds for the Central Universities (2019kfyXKJC021, 2019kfyXJJS091).
  • 摘要: 随着移动互联网的快速发展,许多利用手机App打车的网约车平台也应运而生.这些网约车平台大大减少了网约车的空驶时间和乘客等待时间,从而提高了交通效率.作为平台核心模块,网约车路径规划问题致力于调度空闲的网约车以服务潜在的乘客,从而提升平台的运营效率,近年来受到广泛关注.现有研究主要采用基于值函数的深度强化学习算法(如deep Q-network, DQN)来解决这一问题.然而,由于基于值函数的方法存在局限,无法应用到高维和连续的动作空间.提出了一种具有动作采样策略的执行者-评论者(actor-critic with action sampling policy, AS-AC)算法来学习最优的空驶网约车调度策略,该方法能够感知路网中的供需分布,并根据供需不匹配度来确定最终的调度位置.在纽约市和海口市的网约车订单数据集上的实验表明,该算法取得了比对比算法更低的请求拒绝率.
    Abstract: With the rapid development of the mobile Internet, many online ride-hailing platforms that use mobile apps to request taxis have emerged. Such online ride-hailing platforms have reduced significantly the amounts of the time that taxis are idle and that passengers spend on waiting, and improved traffic efficiency. As a key component, the taxi route planning problem aims at dispatching idle taxis to serve potential requests and improving the operating efficiency, which has received extensive attention in recent years. Existing studies mainly adopt value-based deep reinforcement learning methods such as DQN to solve this problem. However, due to the limitations of value-based methods, existing methods cannot be applied to high-dimensional or continuous action spaces. Therefore, an actor-critic with action sampling policy, called AS-AC, is proposed to learn an optimal fleet management strategy, which can perceive the distribution of supply and demand in the road network, and determine the final dispatch location according to the degree of mismatch between supply and demand. Extensive experiments on New York and Haikou taxi datasets offer insight into the performance of our model and show that it outperforms the comparison approaches.
  • 期刊类型引用(7)

    1. 葛振兴,向帅,田品卓,高阳. 基于深度强化学习的掼蛋扑克博弈求解. 计算机研究与发展. 2024(01): 145-155 . 本站查看
    2. 周雅兰,廖易天,粟筱,王甲海. 深度强化学习Memetic算法求解取送货车辆路径问题. 计算机科学与探索. 2024(03): 818-830 . 百度学术
    3. 刘璐菲,周慧娟,张尊栋. 考虑乘客动态需求的应急接驳公交调度优化. 交通工程. 2024(05): 106-113 . 百度学术
    4. 李雪峰. 基于蚁群算法的城市轨道交通路径规划在旅游管理中的应用研究. 贵阳学院学报(自然科学版). 2024(02): 59-63 . 百度学术
    5. 郭羽含,朱茹施. 基于多模深度森林和迭代Kuhn-Munkres的动态上车点推荐算法. 计算机应用研究. 2024(12): 3634-3644 . 百度学术
    6. 杨悦,潘刚,朱敬华. 真实交通数据下的实时电动汽车智能充电策略. 计算机与数字工程. 2023(01): 133-141+147 . 百度学术
    7. 邓超,陈志,张欣,陆史堃,刘迪,张云彬,叶朝文,李派禹,许良本,肖骏,郑传增. 卷烟零售终端走访路径规划算法集成与应用. 中国烟草学报. 2023(03): 94-103 . 百度学术

    其他类型引用(31)

计量
  • 文章访问数:  1206
  • HTML全文浏览量:  17
  • PDF下载量:  727
  • 被引次数: 38
出版历程
  • 发布日期:  2022-01-31

目录

    /

    返回文章
    返回