Overview of the Frontier Progress of Causal Machine Learning
-
摘要:
机器学习是实现人工智能的重要技术手段之一,在计算机视觉、自然语言处理、搜索引擎与推荐系统等领域有着重要应用.现有的机器学习方法往往注重数据中的相关关系而忽视其中的因果关系,而随着应用需求的提高,其弊端也逐渐开始显现,在可解释性、可迁移性、鲁棒性和公平性等方面面临一系列亟待解决的问题.为了解决这些问题,研究者们开始重新审视因果关系建模的必要性,相关方法也成为近期的研究热点之一.在此对近年来在机器学习领域中应用因果技术和思想解决实际问题的工作进行整理和总结,梳理出这一新兴研究方向的发展脉络.首先对与机器学习紧密相关的因果理论做简要介绍;然后以机器学习中的不同问题需求为划分依据对各工作进行分类介绍,从求解思路和技术手段的视角阐释其区别与联系;最后对因果机器学习的现状进行总结,并对未来发展趋势做出预测和展望.
Abstract:Machine learning is one of the important technical means to realize artificial intelligence, and it has important applications in the fields of computer vision, natural language processing, search engines and recommendation systems. Existing machine learning methods often focus on the correlations in the data and ignore the causality. With the increase in application requirements, their drawbacks have gradually begun to appear, facing a series of urgent problems in terms of interpretability, transferability, robustness, and fairness. In order to solve these problems, researchers have begun to re-examine the necessity of modeling causal relationship, and related methods have become one of the recent research hotspots. We organize and summarize the work of applying causal techniques and ideas to solve practical problems in the field of machine learning in recent years, and sort out the development venation of this emerging research direction. First, we briefly introduce the closely related causal theory to machine learning. Then, we classify and introduce each work based on the needs of different problems in machine learning, explain their differences and connections from the perspective of solution ideas and technical means. Finally, we summarize the current situation of causal machine learning, and make predictions and prospects for future development trends.
-
随着城市的不断快速发展,城市交通问题日益严峻,如交通拥堵等[1]. 为了解决这些问题,大量智能交通系统(intelligent transportation systems,ITSs)被广泛地部署,用于城市交通感知和监控[2]. 例如,澳大利亚新南威尔士州构建交通流量监控系统(taffic volume viewer system, TVVS)[3],部署超过600个交通感知站点. 然而,由于设备故障、数据传输和系统供电等问题,感知数据缺失问题在ITSs中普遍存在[4]. 例如,文献[5]统计分析发现,澳大利亚TVVS系统中约25%的站点感知数据缺失率超过60%,严重影响该系统的正常使用. 因此,准确实时地恢复大规模ITSs缺失感知数据对实现智慧城市的智能交通至关重要.
本文提出基于边缘智能计算的大规模交通缺失感知数据恢复系统,既利用大量不同交通站点感知数据之间的相关性,又利用部署在感知站点附近的边缘节点强大的计算处理能力,从而实现大规模交通感知数据的精确自适应恢复. 但是,要实现该系统,需要解决2方面的挑战:
1) 高计算复杂性的边缘节点部署. 边缘节点部署,既需要考虑部署在不同交通感知站点的成本与收益各不相同,还与交通感知数据分配策略紧密相关,从而使边缘节点最优部署问题更加复杂,在2.2节被证明是NP-hard问题. 所以,如何解决这个高计算复杂性问题以实现最优部署非常具有挑战性.
2) 高时空动态的感知数据相关性. 交通感知数据的时空相关性具有动态性、时变性和复杂性,经常受道路拓扑、感知站点位置、天气以及社会事件等多方面因素的影响[6]. 因此,如何基于该动态的、时变的、难建模的时空相关性实现感知数据的精确恢复非常具有挑战性. 进一步地,数据之间的相关性影响各个交通感知站点的数据分配策略,如当感知数据之间的相关性较差时,需要增加边缘节点的分配数据量,以保证数据恢复的鲁棒性. 但是感知数据之间的高时空动态相关性使保证感知数据恢复精度的鲁棒性非常困难.
为了解决上述2个挑战,本文提出基于边缘智能计算的城市交通感知数据自适应恢复系统,主要包括2部分:
1) 具有理论下界的边缘节点次优部署分配. 针对挑战1,首先,通过问题等价转化,解耦边缘节点部署和感知数据分配之间的复杂关系. 然后,通过理论证明该问题具有非负的、单调的和子模的目标函数,以及
p -独立系统的约束条件. 最后,基于该问题的性质分析,提出基于子模理论的边缘节点次优部署算法,能够在多项式时间复杂度内获得具有理论下界的近似最优解.2) 基于低秩理论的感知数据自适应精确恢复. 针对挑战2,首先,基于实际交通感知数据集,对感知数据进行时空维度的低秩分析;然后,基于该分析结果,提出基于低秩理论的时空维度联合数据恢复算法;最后,针对感知数据相关性的高时空动态变化,提出基于奇异值分解的感知数据非缺失下限估计. 基于该下限估计反馈,自适应地调整各交通感知站点的感知数据分配比例,以保证感知数据的精确恢复,从而提高系统数据恢复性能的鲁棒性.
综上所述,本文主要具有3方面的创新和贡献:
1) 提出基于边缘智能计算的城市交通感知数据自适应恢复系统,既利用基于子模优化理论的边缘计算,又利用基于低秩理论的智能计算,还基于非缺失下限估计反馈,自适应地调整交通站点感知数据分配比例,从而实现交通感知数据的“闭环”处理,提高系统的鲁棒性.
2) 针对边缘节点部署NP-hard问题,基于子模优化理论,通过问题解耦转化和性质分析,提出近似比为
1/(2+⌈max 的边缘节点次优部署分配算法,其中{c_{js}} 表示任意一个边缘节点{e_s} 部署在任意一个感知站点{\lambda _j} 处的成本. 同时,提出缺失交通感知数据的自适应恢复算法,利用基于低秩理论的感知数据恢复,以及基于奇异值分解的非缺失下限估计反馈调整,实现缺失感知数据的自适应精确恢复.3) 基于澳大利亚600个交通感知站点1年的实际感知数据构建原型系统,并基于该系统进行全面且深入的实验评估. 结果表明,所提算法的边缘节点部署性能达到最优性能的90%以上,缺失数据恢复精度比3种方法至少提高43. 8%. 同时,自适应数据恢复精度平均提高40. 3%.
1. 相关工作
为保障智能交通系统的正常运行,促进智慧城市的进一步发展,大量工作开始致力于研究城市交通感知数据的精确恢复. 因此本文提出了基于边缘智能计算的城市交通感知数据自适应恢复系统,所以下面将主要介绍交通感知数据恢复和边缘节点部署方面的研究工作.
1) ITSs交通感知数据恢复. 智能交通系统在城市化进程不断深入的当下起着越来越重要的作用,然而交通感知数据的普遍缺失却极大地影响了ITSs的效用,为此越来越多的研究工作开始致力于交通感知数据的精确恢复. 例如,文献[7]利用真实数据和仿真数据,同时结合生成式对抗网络对交通感知数据进行恢复. 文献[8]中以高速公路交通数据为例,提出了一种数据融合方法,通过挖掘感知数据内在特性以重构缺失数据. 文献[9]中通过将交通感知数据恢复问题建模为一个高维张量补全问题,并采用奇异值分解来进一步了解感知数据的内在联系,以达到缺失数据补全的目的. 文献[4]将城市交通感知区域建模成一个具有时空相关性的张量,同时结合交通感知数据的城市特性完成对缺失数据的填补. 文献[10]中提出一种联合空间多核学习和非负矩阵分解的策略机制,去补全缺失感知数据. 该机制充分考虑了多感知区域间多层面的相关性,使得其能获得一个较好的数据恢复精度. 有别于文献[4, 7-10]的工作,本文提出基于边缘智能计算的城市交通感知数据自适应恢复系统,实现了交通感知数据的自适应动态精确恢复.
2) 边缘计算中的节点部署. 由于感知数据恢复存在规模庞大和计算密集等问题,本文提出通过边缘计算来解决这一难题,充分利用边缘服务器强大的计算能力来完成对感知数据及时精准的恢复. 目前,也有很多其他关于边缘计算应用的研究. 例如,文献[11-12]中提出利用云端服务器和边缘节点协同处理任务;文献[13]中研究多个边缘节点协作优化任务卸载和服务缓存,以达到降低整体任务时延的目的;文献[14]中提出利用边缘计算来存储整理车辆的道路感知信息,以此为无人驾驶汽车提供及时准确的道路信息,确保驾驶的安全;文献[15]中研究了云服务和端服务之间通过事件机制进行的服务适配,并结合图论和排队论方法实现了服务的平均响应时间最小. 此外,关于边缘节点的相关研究也有很多,例如文献[16-17]中研究了关于节点部署成本最小的问题,文献[18-20]中也研究了在站点容量约束和带宽约束下最小化边缘节点部署成本的问题. 本文提出的部署方案主要为处理缺失感知数据而提出,对每个边缘节点都有一定的数据上传量下限要求. 因此,前人的研究成果并不适用于本文的研究. 虽然文献[5]中提出了一种边缘节点部署和数据恢复算法,但是没有考虑数据恢复结果对于边缘节点处的反馈. 与该工作不同,本文提出一种基于边缘智能计算的缺失感知数据自适应恢复系统,基于恢复结果的反馈,自适应调整恢复过程,从而保证数据恢复精度,提高系统恢复的鲁棒性.
2. 系统模型和问题建模
2.1 系统模型
为解决大规模ITSs系统的感知数据缺失问题,本文提出基于边缘智能计算的大规模交通缺失感知数据动态自适应恢复系统模型架构,主要包括交通感知站点、边缘节点和云服务器.
1) 交通感知站点. 在智能交通系统中,交通感知站点被部署在城市的各条道路或其交叉路口上,感知和监测道路实时的交通信息,如车流量、车速等[21] . 假设有
N 个站点,用{\lambda _i} 表示第i 个站点,其中i \in \{ 1, 2, … ,N\} . 此外,用{w_i} 表示{\lambda _i} 的感知数据规模大小. 表1给出本文主要数学符号说明.表 1 主要数学符号的说明Table 1. Main Mathmatics Notations Description符号 符号含义 N,{\lambda _i},{w_i} 交通站数量、第i个交通站点和其数据量 S,{e_s},{d_s} 边缘节点数量、第s个边缘节点和其容量上限 {x_{js}},{c_{js}} 表示边缘节点{e_s}是否被部署到交通站点{\lambda _j}和其部署成本 {l_{ij}},{y_{ij}} {\lambda _i} 是否在{\lambda _j}覆盖范围内、分配数据量比例 {\boldsymbol{x} },{\boldsymbol{y} } {\boldsymbol{x} } = ({x_{js} }),{\boldsymbol{y} } = ({y_{ij} }) \mathcal{G},\mathcal{A} 交通站点和边缘节点配对集、可行的配对集 { {\boldsymbol{M} }_{js} },{m_j} 在交通站点{\lambda _j}处边缘节点{e_s}的缺失矩阵及其非缺失下限 2) 边缘节点. 所有交通感知数据被传送至边缘节点进行缺失数据恢复处理. 考虑到部署的便捷性及部署成本问题,边缘节点将被部署在交通感知站点处. 假设共有
S 个边缘节点,用{e_s} 表示第s 个边缘节点,其中s \in \{ 1, 2, … ,S\} . 用{x_{js}} = 1 或0表示边缘节点{e_s} 是否被部署到交通站点{\lambda _j} 处,{x_{js}} = 1 表示被部署,否则{x_{js}} = 0 . 每个节点的部署需耗费一定成本,用{c_{js}} 表示边缘节点{e_s} 部署到交通站点{\lambda _j} 的成本. 不同的边缘节点有不同的计算存储容量,用{d_s} 表示{e_s} 的计算存储容量. 此外,用{y_{ij}} 表示交通站点{\lambda _i} 传输到部署在{\lambda _j} 处边缘节点的数据比例,即{y_{ij}} \in [0,1] . 为方便处理,在进行缺失数据恢复时,边缘节点首先将各个站点上传的感知数据整合成一个含缺失数据的矩阵,即缺失矩阵,用{{\boldsymbol{M}}_{js}} 表示{\lambda _j} 处边缘节点e_s 整合的缺失矩阵. 同时,为保证恢复精度,缺失矩阵的元素缺失程度不能太大,即传送到边缘节点的非缺失感知数据量需满足一定下限,用{m_j} 表示{\lambda _j} 处边缘节点整合矩阵的非缺失下限. 特别地,矩阵非缺失下限值与矩阵的秩大小密切相关,具体见3.2.2节. 此外,由于外界因素,如环境、天气、节假日等的影响,感知数据矩阵的秩也将随之变化,进一步地将影响到数据最后的恢复精度. 为保证在变动的外界因素下,缺失数据的恢复精度依然能满足一定要求,边缘节点将依据恢复结果计算相应非缺失下限值,并基于非缺失下限值调整各交通站点的感知数据分配比例,以保证感知数据的自适应精确恢复. 此外,为提高恢复效率,边缘节点应能同时处理尽可能多的感知数据.3) 云服务器. 云服务器在整个系统中主要有2个功能: ①管理和控制边缘节点. 连接所有边缘节点,并灵活高效地控制和管理各个交通感知站点和边缘节点之间的数据传输和调度[22]. 具体地,首先,所有边缘节点根据恢复结果,计算非缺失下限值,并将该值发送至云服务器;然后,云服务器根据各个边缘节点上传的非缺失下限值重新计算感知数据分配方案,并反馈回各个边缘节点;最后,边缘节点通知各个交通感知站点新的感知数据分配比例. ②复杂的大规模数据处理[23-25]. 当边缘节点恢复缺失感知数据之后,利用完整的交通感知数据进一步地进行复杂的大规模数据分析和挖掘,如基于深度学习的交通感知大数据态势分析和挖掘等[26-27].
2.2 问题建模
基于2.1节所述的系统模型,本文研究的问题主要包括:1) 如何在部署成本约束下设计边缘节点部署方案,提高部署性能使其能更好地服务感知数据恢复,即能同时处理尽可能多的感知数据. 2) 如何基于边缘节点部署实现感知数据的动态自适应恢复.
1) 子问题P1——边缘节点的次优部署. 已知边缘节点的计算存储容量
\{ {d_s}|s \in \{1,2,…,S\}\} 和交通感知站点的感知数据规模\{ {w_i}|i \in \{1,2,…,N\}\} ,如何设计S 个边缘节点部署到N 个交通感知站点的部署策略{\boldsymbol{x}} = ({x_{js}}{\text{|}}\forall j \in \{ 1,2, … ,N\} , \forall s \in \{ 1,2, … ,S\} ) ,和N 个交通感知站点传输到已部署边缘节点的感知数据量分配方案{\boldsymbol{y}} = ({y_{ij}}{\text{|}}\forall i,j \in \{ 1,2, … ,N\} ) ,以在总部署成本预算{C_0} 约束下,最大化所有部署边缘节点处理总数据量,即交通感知站点总上传数据量.({\text{P1}})\mathop {\max }\limits_{{\boldsymbol{x}},{\boldsymbol{y}}} {\text{ }}\mathop \sum \limits_{i = 1}^N \mathop \sum \limits_{j = 1}^N {w_i}{y_{ij}}, (1) {\rm{s.t.}}\;\sum\limits_{j = 1}^N {{y_{ij}}} \leqslant 1,\forall i \in \{ 1,2, … ,N\} , (2) \sum\limits_{j = 1}^N {{x_{js}}} \leqslant 1,\forall s \in \{ 1,2,… ,S\} , (3) \sum\limits_{i = 1}^N {{w_i}} {y_{ij}} \leqslant \sum\limits_{s = 1}^S {{x_{js}}} {d_s},\forall j \in \{ 1,2, … ,N\} , (4) \sum\limits_{i = 1}^N {{w_i}} {y_{ij}} \geqslant \mathop \sum \limits_{s = 1}^S {x_{js}}{m_j},\forall j \in \{ 1,2, … ,N\} , (5) \sum\limits_{s = 1}^S {\sum\limits_{j = 1}^N {{x_{js}}} } {c_{js}} \leqslant {C_0},\;\;\: (6) {y_{ij}} \leqslant {l_{ij}},\forall i,j \in \{ 1,2, …,N\} . (7) 其中:式(1)中
\displaystyle\sum \limits_{i = 1}^N \displaystyle\sum \limits_{j = 1}^N {w_i}{y_{ij}} 表示所有部署边缘节点同时处理的总数据量;式(2)表示{\lambda _j} 将部分或全部感知数据上传到边缘节点进行处理;式(3)表示1个边缘节点最多被部署到1个交通站点处;式(4)表示{\lambda _j} 处边缘节点接收到的总处理数据量不超过其计算存储容量上限;式(5)表示{\lambda _j} 处边缘节点整合的感知数据矩阵其缺失数据量要满足一定的下限约束,以避免因缺失程度太大而导致无法精确地恢复;式(6)表示所有边缘节点的总部署成本需满足成本预算限制,特别地,由于通信成本远小于部署成本[28],所以本文不考虑数据传输带来的成本;式(7)表示交通感知站点之间距离较远时,其数据之间的空间相关性比较弱,对缺失数据恢复作用非常小[29],为此,只考虑作用范围内的感知站点,用{l_{ij}} = 1(0) 表示{\lambda _i} 是否在{\lambda _j} 的作用范围内,如果是,则{l_{ij}} = 1 ,否则{l_{ij}} = 0 .2) 子问题P2——感知数据的自适应恢复. 如何基于边缘节点整合的缺失矩阵,通过矩阵中完整元素恢复缺失元素. 同时基于恢复结果,估计当前感知数据相关性程度,通过该相关性程度大小计算保证精确恢复所需的非缺失感知数据下限值,从而基于下限值调节感知站点上传至各边缘节点感知数据比例,达到动态自适应精确恢复的目的. 用
T 表示矩阵{{\boldsymbol{M}}_{js}} 的元素个数,用{v_t} 和{\hat v_t} 分别表示该矩阵第t 个元素的实际值和估计值,t\in \{1,2,…,T\} . 因此,感知数据恢复问题可描述为:如何设计矩阵恢复函数{\varPhi _t}( \cdot ) ,使得所有缺失感知数据的估计值与真实值之间的误差最小,形式化表示为:({\text{P2}})\mathop {\min }\limits_{{\varPhi _t}( \cdot )} {\text{ }}\frac{1}{T}\sum\limits_{t = 1}^T {\left| {{v_t} - {{\hat v}_t}} \right|} , (8) {\rm{s.t.}}\;{\hat v_t} = {\varPhi _t}({{\boldsymbol{M}}_{js}}),\forall t \in \{ 1,2,…,T\} . (9) 其中:式(8)表示感知数据的估计误差,即平均绝对值误差[30];式(9)表示感知数据的估计恢复,
{\varPhi _t}({{\boldsymbol{M}}_{js}}) 表示利用矩阵恢复函数,基于{{\boldsymbol{M}}_{js}} 中所有非缺失数据估计其第t 个元素的值. 同时,为达到动态自适应精确恢复的目的,还需依据P2恢复结果,更新非缺失下限值,以保证感知数据的恢复精度.定理1. 边缘节点的最优部署分配问题
{\text{P1}} 是NP-hard问题.证明. 当每个交通站点的感知数据量规模
\{ {w_i}\} 足够大,远大于所有边缘节点的存储容量上限\{ {d_s}\} 时,式(2)(5)可被松弛. 原问题简化为\begin{aligned} &\mathop {\max }\limits_{\boldsymbol{x}} {\text{ }}\mathop \sum \limits_{s = 1}^S \mathop \sum \limits_{j = 1}^N {x_{js}}{d_s},\\ &{\rm{s.t.}}\;\; 式(3)(6) .\end{aligned} (10) 将
S 个边缘节点与N 个交通站点的所有配对看成S\times N 个物品\{ (j,s)|\forall s \in \{ 1,2, … ,S\} ,\forall j \in \{ 1,2, … ,N\} \} ,并将每个节点的配对集合分为一组,共S 组. 因此,原问题可规约为一个经典的0-1背包问题:已知每个物品(j,s) 的价值和成本分别为{d_s} 和{c_{js}} , 如何从每组物品中至多选择1个物品,使在总成本{C_0} 约束下最大化物品价值\displaystyle\sum \limits_{s = 1}^S \displaystyle\sum \limits_{j = 1}^N {x_{js}}{d_s} . 因为该0-1背包问题是NP-hard问题[31],所以,问题{\text{P1}} 也是NP-hard问题,证毕.3. 算法系统设计
为了解决2.2节所述的子问题P1和P2,本文提出基于边缘智能计算的城市交通感知数据动态自适应恢复系统. 如图1所示,该系统基于交通感知站点中存在缺失的交通感知数据和交通感知站点的交通拓扑网络图,利用边缘智能计算进行感知数据的动态自适应恢复,从而得到精确完整的交通感知数据. 具体地,该系统主要包括2个模块:
1) 具有理论下界的边缘节点次优部署(3.1节). 首先,通过问题等价转化,在3.1.1节分析
{\text{P1}} 问题的目标函数和约束条件性质;然后,基于理论分析结果,在3.1.2节提出基于子模理论的边缘节点次优部署算法,在多项式时间内能获得该NP-hard问题的具有理论下界的近似最优解.2) 基于低秩理论的感知数据自适应恢复(3.2节). 首先,分析交通感知数据的时空维度近似低秩特性,在3.2.1节提出基于低秩理论的交通感知数据恢复算法;然后,基于恢复结果,在3.2.2节利用奇异值分解和矩阵自由度理论估计交通感知数据的非缺失下限,依据此下限值更新感知数据分配比例,保证感知数据的精确恢复.
3.1 具有理论下界的边缘节点次优部署
3.1.1 问题性质理论分析
1) 问题等价转化. 问题P1包含2类决策变量,即边缘节点部署决策变量
{\boldsymbol{x}} 和感知数据分配变量{\boldsymbol{y}} . 用{{\boldsymbol{y}}^*}({\boldsymbol{x}}) 表示给定边缘节点部署规划{\boldsymbol{x}} 的最优感知数据分配方案. 通过理论分析,可得引理1.引理1. 对于问题P1,如果给定边缘节点部署方案,能够在多项式时间内获得最优的感知数据分配方案
{\boldsymbol{y}} .证明. 给定任意的边缘节点部署策略
{{\boldsymbol{x}}^0} = (x_{js}^0) ,问题P1转化为只关于{\boldsymbol{y}} 的感知数据分配问题{\text{P}}{{\text{1}}' } :\begin{aligned} &({\rm{P1'}})\mathop {\max }\limits_{\boldsymbol{y}} \displaystyle\sum \limits_{i = 1}^N \displaystyle\sum \limits_{j = 1}^N {w_i}{y_{ij}},\\ &{\text{ s}}{\text{.t}}{\text{.}}\;\;式(2)(7), \end{aligned} (11) \sum\limits_{i = 1}^N {{w_i}} {y_{ij}} \leqslant \sum\limits_{s = 1}^S {x_{js}^0} {d_s},\forall j \in \{ 1,2, … ,N\} , (12) \sum\limits_{i = 1}^N {{w_i}} {y_{ij}} \geqslant \sum\limits_{s = 1}^S {x_{js}^0} {m_j},\forall j \in \{ 1,2, … ,N\} . (13) {\text{P}}{{\text{1}}^\prime } 是一个简单的线性规划问题,可利用多种经典的线性规划方法[32]在多项式时间内求得最优解,证毕.用
H({\boldsymbol{x}},{\boldsymbol{y}}) 表示问题P1的目标函数. 因此,根据引理1,可以将H({\boldsymbol{x}},{\boldsymbol{y}}) 转化为只关于决策变量{\boldsymbol{x}} 的目标函数H({\boldsymbol{x}},{{\boldsymbol{y}}^*}({\boldsymbol{x}})) . 进一步地,定义集合函数\mathcal{G}: = \{ (j,s)\mid \forall j \in \{ 1,2,… ,N\} ,s \in \{ 1,2,… ,S\} \} ,\mathcal{A}: = \{ (j, s)|{x_{js}} = 1,\forall j \in \{ 1, 2,… ,N\} ,s \in \{ 1,2,… ,S\} \} ,\;\;\:F(\mathcal{A}): = H({\boldsymbol{x}},{{\boldsymbol{y}}^*}({\boldsymbol{x}})) . 因此,可将问题P1等价转化为集合函数优化问题{\text{P}}{{\text{1}}^{\prime \prime }} :({\text{P}}{{\text{1}}''})\mathop {\max }\limits_{\mathcal{A} \subseteq \mathcal{G}} {\text{ }}F(\mathcal{A}), (14) {\text{s}}{\text{.t}}{\text{. }}\sum\limits_{j:(j,s) \in \mathcal{A}} {} {1}_{(j,s) \in \mathcal{A}} \leqslant 1,\forall s \in \{ 1,2,… ,S\} , (15) \sum\limits_{(j,s) \in \mathcal{A}} {\;\;\:{c_{js}}} \leqslant {C_0}, (16) 其中
1( \cdot ) 表示指示函数.2) 问题性质分析. 下面基于定义1和定义2分别分析问题
{\text{P}}{{\text{1}}^{\prime \prime }} 的目标函数性质(如引理2)和约束条件性质(如引理3).定义1. 非负性、单调性和子模性[33]. 对于一个集合函数
F( \cdot ):{2^\mathcal{R}} \to \mathbb{R} (\mathcal{R} 是一个有限集),如果F(\varnothing) = 0 并且F(\mathcal{A}) \geqslant 0\;\;\:(\forall \mathcal{A} \subset \mathcal{R}) ,则集合函数F( \cdot ) 是非负的;如果\forall {\mathcal{A}_1} \subseteq {\mathcal{A}_2} \subseteq \mathcal{R} ,F({\mathcal{A}_1}) \leqslant F({\mathcal{A}_2}) ,则F( \cdot ) 是单调的;当且仅当\forall {\mathcal{A}_1} \subseteq {\mathcal{A}_2} \subseteq \mathcal{R} ,\forall e \in \mathcal{R}\backslash {\mathcal{A}_2} ,F({\mathcal{A}_1} \cup \{ e\} ) - F({\mathcal{A}_1})\geqslant F({\mathcal{A}_2} \cup \{ e\} )-F({\mathcal{A}_2}) ,F( \cdot ) 是子模的.引理2.
{\text{P}}{{\text{1}}^{\prime \prime }} 的目标函数F(\mathcal{A})(\mathcal{A} \subseteq \mathcal{G}) 是非负的、单调的和子模的.证明. 首先,由于
F(\mathcal{A}) 的物理含义是感知数据量,所以易证其是非负的和单调的.其次,证明
F(\mathcal{A}) 是子模的. 根据定义1,要证其是子模的,需证明\forall {\mathcal{A}_1} \subseteq {\mathcal{A}_2} \subseteq \mathcal{G} ,\forall ({j_1},{s_1}) \in \mathcal{G}\backslash {\mathcal{A}_2} ,下列不等式恒成立:F({\mathcal{A}_1} \cup \{ ({j_1},{s_1})\} ) - F({\mathcal{A}_1}) \geqslant F({\mathcal{A}_2} \cup \{ ({j_1},{s_1})\} ) - F({\mathcal{A}_2}). (17) 用
{{\boldsymbol{y}}^{(1)}} = (y_{ij}^{(1)}) {\hat {\boldsymbol{y}}^{(1)}} = (\hat y_{ij}^{(1)}) ,{{\boldsymbol{y}}^{(2)}} = (y_{ij}^{(2)}) ,{\hat{\boldsymbol{ y}}^{(2)}} = (\hat y_{ij}^{(2)}) 分别表示基于部署方案{\mathcal{A}_1} ,{\mathcal{A}_1} \cup \{ ({j_1},{s_1})\} ,{\mathcal{A}_2} ,{\mathcal{A}_2} \cup \{ ({j_1},{s_1})\} ,求解问题{\text{P}}{{\text{1}}^\prime } 所得到的最优感知数据分配解. 为便于后续表述,用{{\boldsymbol{z}}^{(1)}} = (z_{ijs}^{(1)}) ,{{\hat {\boldsymbol z}}^{(1)}}_{} = ({\hat z^{(1)}}_{ijs}) ,{{\boldsymbol{z}}^{(2)}} = (z_{ijs}^{(2)}) ,{\hat{\boldsymbol{ z}}^{(2)}}_{} = ({\hat z^{(2)}}_{ijs}) ,等价表示{{\boldsymbol{y}}^{(1)}} = (y_{ij}^{(1)}) ,{\hat{\boldsymbol{ y}}^{(1)}}_{} = (\hat y_{ij}^{(1)}) ,{{\boldsymbol{y}}^{(2)}} = (y_{ij}^{(2)}) ,{\hat{\boldsymbol{ y}}^{(2)}}_{} = (\hat y_{ij}^{(2)}) . 其中{z_{ijs}} 表示交通感知站点{\lambda _i} 上传至部署在{\lambda _j} 处边缘节点{e_s} 的感知数据比例. 因此可得F({\mathcal{A}_1} \cup \{ ({j_1},{s_1})\} ) - F({\mathcal{A}_1}) = \displaystyle\sum\limits_{(j,s) \in {\mathcal{A}_1}} {\displaystyle\sum\limits_{i = 1}^N {{w_i}} } ({\hat z_{ijs}}^{(1)} - z_{ijs}^{(1)}) + \displaystyle\sum\limits_{i = 1}^N {{w_i}} \hat z_{i{j_1}{s_1}}^{(1)}. 同理可得
F({\mathcal{A}_2} \cup \{ ({j_1},{s_1})\} ) - F({\mathcal{A}_2}) = \displaystyle\sum\limits_{(j,s) \in {\mathcal{A}_2}} {\displaystyle\sum\limits_{i = 1}^N {{w_i}} } ({\hat z_{ijs}}^{(2)} - z_{ijs}^{(2)}) + \displaystyle\sum\limits_{i = 1}^N {{w_i}} \hat z_{i{j_1}{s_1}}^{(2)}. 特别地,由于问题
{\text{P}}{{\text{1}}^\prime } 是线性规划问题,它的最优感知数据分配解可能不唯一. 因此,为了分析方便,定义{{\boldsymbol{\hat z}}^{(1)}}_{} = ({\hat z^{(1)}}_{ijs}) 和{{\boldsymbol{\hat z}}^{(2)}}_{} = ({\hat z^{(2)}}_{ijs}) 为所有最优分配解中节点({j_1},{s_1}) 上感知数据最小的解. 为证明不等式(17)成立,下面证明2个结论.1)证明
\displaystyle\sum\limits_{(j,s) \in {\mathcal{A}_1}} {\displaystyle\sum\limits_{i = 1}^N {{w_i}} } ({\hat z_{ijs}}^{(1)} - z_{ijs}^{(1)}) =\displaystyle\sum\limits_{(j,s) \in {\mathcal{A}_2}} {\displaystyle\sum\limits_{i = 1}^N {{w_i}} } ({\hat z_{ijs}}^{(2)} - z_{ijs}^{(2)}). \displaystyle\sum\limits_{(j,s) \in {\mathcal{A}_1}} {\displaystyle\sum\limits_{i = 1}^N {{w_i}} } ({\hat z_{ijs}}^{(1)} - z_{ijs}^{(1)}) 和\displaystyle\sum\limits_{(j,s) \in {\mathcal{A}_2}} {\displaystyle\sum\limits_{i = 1}^N {{w_i}} } ({\hat z_{ijs}}^{(2)} - z_{ijs}^{(2)}) 分别表示加入部署新节点({j_1},{s_1}) 后原部署方案{\mathcal{A}_1} 和{\mathcal{A}_2} 中边缘节点变化的感知数据量.首先,证明
\displaystyle\sum\limits_{(j,s) \in {{\mathcal{A}}_1}} {\displaystyle\sum\limits_{i = 1}^N {{w_i}} } ({\hat z_{ijs}}^{(1)} - z_{ijs}^{(1)})=0. 因为
(z_{ijs}^{(1)}) 是部署方案{\mathcal{A}_1} 所对应的最优感知数据分配解,所以\displaystyle\sum\limits_{({j_1},{s_1}) \in {{\mathcal{A}}_1}} {\displaystyle\sum\limits_{i = 1}^N {{w_i}} } (\hat z_{ijs}^{(1)} - z_{ijs}^{(1)}) \leqslant 0. 然后利用反证法可证明
\displaystyle\sum\limits_{({j_1},{s_1}) \in {{\mathcal{A}}_1}} {\displaystyle\sum\limits_{i = 1}^N {{w_i}} } (\hat z_{ijs}^{(1)} - z_{ijs}^{(1)}) \geqslant 0. 具体证明:假设该结论不成立,即
\displaystyle\sum\limits_{({j_1},{s_1}) \in {{\mathcal{A}}_1}} {\displaystyle\sum\limits_{i = 1}^N {{w_i}} } (\hat z_{ijs}^{(1)} - z_{ijs}^{(1)}) < 0. 因此,该不等式表明加入节点
({j_1},{s_1}) 后,{\mathcal{A}_1} 中边缘节点的感知数据量减少. 然而,根据目标函数的单调非减性可知,{\mathcal{A}_1} \cup \{ ({j_1},{s_1})\} 中节点的感知数据量不会减少. 因此,节点({j_1},{s_1}) 的感知数据量增加,所以可调整节点({j_1},{s_1}) 的感知数据到{\mathcal{A}_1} 中的边缘节点. 所以{\mathcal{A}_1} \cup \{ ({j_1},{s_1})\} 对应的感知数据分配解不是所有最优解中({j_1},{s_1}) 数据量最小的解. 与结论的前提条件矛盾,即{{\boldsymbol{\hat z}}^{(1)}}_{} = ({\hat z^{(1)}}_{ijs}) 是所有最优解中({j_1},{s_1}) 数据量最小的解. 所以假设不成立,原结论成立,即\displaystyle\sum\limits_{({j_1},{s_1}) \in {{\mathcal{A}}_1}} {\displaystyle\sum\limits_{i = 1}^N {{w_i}} }(\hat z_{ijs}^{(1)} - z_{ijs}^{(1)}) \geqslant 0. 进一步地,因为
\displaystyle\sum\limits_{({j_1},{s_1}) \in {{\mathcal{A}}_1}} {\displaystyle\sum\limits_{i = 1}^N {{w_i}} } (\hat z_{ijs}^{(1)} - z_{ijs}^{(1)}) \leqslant 0. 所以,
\displaystyle\sum\limits_{({j_1},{s_1}) \in {{\mathcal{A}}_1}} {\displaystyle\sum\limits_{i = 1}^N {{w_i}} } (\hat z_{ijs}^{(1)} - z_{ijs}^{(1)}) = 0. 同理可证
\displaystyle\sum\limits_{(j,s) \in {\mathcal{A}_2}} {\displaystyle\sum\limits_{i = 1}^N {{w_i}} } ({\hat z_{ijs}}^{(2)} - z_{ijs}^{(2)}) = 0. 综上,结论1)成立.
2)证明
\displaystyle\sum\limits_{i = 1}^N {{w_i}} \hat z_{i{j_1}{s_1}}^{(1)} \geqslant \displaystyle\sum\limits_{i = 1}^N {{w_i}} \hat z_{i{j_1}{s_1}}^{(2)}. \displaystyle\sum\limits_{i = 1}^N {{w_i}} \hat z_{i{j_1}{s_1}}^{(1)} 和\displaystyle\sum\limits_{i = 1}^N {{w_i}} \hat z_{i{j_1}{s_1}}^{(2)} 分别表示在部署方案{\mathcal{A}_1} 和{\mathcal{A}_2} 下新节点({j_1},{s_1}) 分配的感知数据量. 因为{\mathcal{A}_1} \subseteq {\mathcal{A}_2} ,所以{\mathcal{A}_1} \cup \{ ({j_1},{s_1})\} \cup ({\mathcal{A}_2}\backslash {\mathcal{A}_1})= {\mathcal{A}_2} \cup \{ ({j_1},{s_1})\} . 由结论1)可得,在{\mathcal{A}_1} \cup \{ ({j_1},{s_1})\} 中加入{\mathcal{A}_2}\backslash {\mathcal{A}_1} 后,{\mathcal{A}_1} \cup \{ ({j_1},{s_1})\} 感知数据量不变. 因此,利用反证法可证明\displaystyle\sum\limits_{i = 1}^N {{w_i}} \hat z_{i{j_1}{s_1}}^{(1)} \geqslant \displaystyle\sum\limits_{i = 1}^N {{w_i}} \hat z_{i{j_1}{s_1}}^{(2)}. 具体证明:假设该结论不成立,即
\displaystyle\sum\limits_{i = 1}^N {{w_i}} \hat z_{i{j_1}{s_1}}^{(1)} < \displaystyle\sum\limits_{i = 1}^N {{w_i}} \hat z_{i{j_1}{s_1}}^{(2)}. 因此,该不等式表明
{\mathcal{A}_1} \cup \{ ({j_1},{s_1})\} 加入{\mathcal{A}_2}\backslash {\mathcal{A}_1} 后,节点({j_1},{s_1}) 的感知数据量增加. 由于{\mathcal{A}_1} \cup \{ ({j_1},{s_1})\} 中边缘节点的感知数据量在{\mathcal{A}_2}\backslash {\mathcal{A}_1} 加入前后保持不变,所以可调节({j_1},{s_1}) 上的感知数据到{\mathcal{A}_1} 方案中的边缘节点. 所以,{\mathcal{A}_2} \cup \{ ({j_1},{s_1})\} 对应的感知数据分配解不是所有最优解中({j_1},{s_1}) 数据量最小的解. 所以假设不成立,原结论成立,即\displaystyle\sum\limits_{i = 1}^N {{w_i}} \hat z_{i{j_1}{s_1}}^{(1)} \geqslant \displaystyle\sum\limits_{i = 1}^N {{w_i}} \hat z_{i{j_1}{s_1}}^{(2)}. 结论2)成立.
基于上述2个结论,可得不等式(17)成立. 因此,
F(\mathcal{A}) 是子模的. 证毕.定义2.
p -独立系统[34]. 给定一个任意有限集合\mathcal{G} ,用\mathcal{I} 表示\mathcal{G} 的子集构成的集合族,即\mathcal{I} \subseteq {2^\mathcal{G}} . 则集合对(\mathcal{G},\mathcal{I}) 被称为独立系统,当且仅当满足2个条件:①\varnothing \in \mathcal{I} ;②如果\mathcal{A} \subseteq \mathcal{B} \in \mathcal{I} ,则\mathcal{A} \in \mathcal{I} .说明:
\mathcal{I} 中的元素被称为独立集. 同时,\forall \mathcal{A} \subseteq \mathcal{G} ,如果\mathcal{A} 中的某个独立集不是\mathcal{A} 中的任何一个独立集的子集,那么该独立集被称为\mathcal{A} 的基. 用r(\mathcal{A}) 和l(\mathcal{A}) 分别表示\mathcal{A} 的最大基和最小基元素的个数. 对于一个任意独立系统(\mathcal{G},\mathcal{I}) 和任意集合\mathcal{A} \subseteq \mathcal{G} ,如果{\max\limits_{\mathcal{A} \subseteq \mathcal{G}}}(r(\mathcal{A})/l(\mathcal{A})) \leqslant p ,则独立系统(\mathcal{G},\mathcal{I}) 被称为p -独立系统.引理3. 式(15)(16)构成
p -独立系统,且p = 1 + \left\lceil {\max \{ {c_{js}}\} /\min \{ {c_{js}}\} } \right\rceil ,其中{c_{js}} 表示任意一个边缘节点{e_s} 部署在任意一个交通站点{\lambda _j} 的成本,\forall j \in \{ 1, 2, … ,N\} , \forall s \in \{ 1,2, … ,S\} .证明. 由定义2可知原证明等价于证明
(\mathcal{G},{\mathcal{I}_p}) 构成p -独立系统,其中\mathcal{G} 表示边缘节点和交通站点所有可能的配对集合,{\mathcal{I}_p} 表示所有可行部署方案的集合. 首先,显然有\varnothing \in {\mathcal{I}_p} . 此外,对于任意2个部署方案\mathcal{X},\mathcal{Y} ,若其满足\mathcal{X} \subseteq \mathcal{Y} \in {\mathcal{I}_p} ,则由于满足问题约束条件的可行解的子集也必定满足约束条件,所以任意可行解的子集也必为可行解. 所以必有\mathcal{X} \in {\mathcal{I}_p} . 所以,根据定义2,(\mathcal{G},{\mathcal{I}_p}) 是一个独立系统.考虑任意集合
\mathcal{A} \subseteq \mathcal{G} ,因为{\mathcal{I}_p} 是可行解集合. 所以\mathcal{A} 中独立集都是可行解. 用{\mathcal{A}_1} 和{\mathcal{A}_2} 分别表示\mathcal{A} 中任意2个最大可行解(即满足全部约束已无法再加入元素),现如果向{\mathcal{A}_2} 中增加元素(j,s) \in {\mathcal{A}_1}\backslash {\mathcal{A}_2} ,就需要在{\mathcal{A}_2} 中拿出一些元素来满足约束. 为满足式(15),需取出至多1个元素. 为了满足式(16),需取出至多\left\lceil {\max \{ {c_{js}}\} /\min \{ {c_{js}}\} } \right\rceil 个元素. 如此循环直到{\mathcal{A}_2} = {\mathcal{A}_1} . 当最差情况发生时,换入|{\mathcal{A}_1}| 个元素需至多换出p|{\mathcal{A}_1}| 个元素,即{\mathcal{A}_2} 中元素个数至多为{\mathcal{A}_1} 中元素个数的p 倍,所以,根据定义2可得式(15)(16)构成p -独立系统.证毕.3.1.2 基于子模理论的边缘节点次优部署算法
根据引理2和引理3可得,子问题P1具有非负的、单调的、子模的目标函数,以及
p -独立系统的约束条件. 因此,基于文献[35]的启发,为求解子问题P1,本文提出基于子模理论的边缘节点次优部署算法. 如算法1所示.算法1. 具有理论下界的边缘节点次优部署算法.
输入:边缘节点容量上限
\{ {d_s}|s \in \{1,2,…,S\}\} ,交通站点数据规模\{ {w_i}| i\in \{1,2,…,N\}\} ,边缘节点部署成本集合\{ {c_{js}}\} , 总成本预算{C_0} ;输出:边缘节点部署方案
{\boldsymbol{x}} = ({x_{js}}) ,感知数据分配方案{\boldsymbol{y}} = ({y_{ij}}) .① 初始化
\mathcal{G} = \{ {x_{js}} = 0|\forall j,s\} ;② 初始化
\mathcal{A} = \varnothing ,\mathcal{B} = \varnothing ;③ while
\mathcal{B} \ne \mathcal{G} ④
v=\underset{e\in \mathcal{G}\backslash \mathcal{B}\;\text{satisfying }(15)(16)}{\mathrm{arg}\;\mathrm{max}}F(\mathcal{A}\cup \{e\}) ;⑤
\mathcal{A} = \mathcal{A} \cup \{ v\} ,\mathcal{B} = \mathcal{B} \cup \{ v\} ;⑥ for
\forall e \in \mathcal{G}\backslash \mathcal{B} ⑦ if
\mathcal{A} \cup \{ e\} 不满足式(15)或式(16)⑧
\mathcal{B} = \mathcal{B} \cup \{ e\} ;⑨ end if
⑩ end for
⑪ end while
⑫ 令
{x}_{js}=1,\forall (j,s)\in \mathcal{A}; ⑬ 基于
{\boldsymbol{x}} = ({x_{js}}) ,利用线性规划方法计算{\boldsymbol{y}} ;⑭ 返回
{\boldsymbol{x}},{\boldsymbol{y}} .算法1的核心思想是在每次迭代中,贪心地选择当前满足约束的、边际效益值最大的边缘节点部署方案. 具体主要包含2步:
1) 添加新元素 (行④⑤). 计算
\mathcal{G}\backslash \mathcal{B} 中所有元素边际效益值,将其中边际效益值最大的元素加入解集\mathcal{A} 中. 其中,\mathcal{B} 表示当前加入\mathcal{A} 中不满足约束的元素集合.2) 剔除冲突元素(行⑥~⑩). 在每次向解集
\mathcal{A} 中添加新元素后,遍历\mathcal{G}\backslash \mathcal{B} ,将当前无法再被添加至\mathcal{A} 中的元素全添加至\mathcal{B} 中. 当\mathcal{B} = \mathcal{G} 时,表明当前已无可添加至解集\mathcal{A} 的元素. 此时得到的\mathcal{A} 即为最终解,而后基于\mathcal{A} ,进一步计算边缘部署方案{\boldsymbol{x}} 和感知数据分配方案{\boldsymbol{y}} .分析算法1的时间复杂度及解最优性,可得定理2.
定理2. 算法1能够在多项式时间内获得近似比为
1/(2 + \left\lceil {\max \{ {c_{js}}\} /\min \{ {c_{js}}\} } \right\rceil ) 的近似最优解.证明. 基于引理2和3,子问题
{\text{P1}} 是具有非负、单调和子模的目标函数及p -独立系统约束的优化问题. 由文献[35]可得,基于算法1,可求得近似比为1/ (1 + p) 的近似最优解. 根据引理3得p = 1 + \left\lceil \max \{ {c_{js}}\} / \right. \left.\min \{ {c_{js}}\} \right\rceil ,因此,算法1可获得近似比为1/(2 + \left\lceil \max \{ {c_{js}}\} /\right. \left.\min \{ {c_{js}}\} \right\rceil ) 的近似最优解. 此外,算法1最多迭代S 次,每次迭代的时间复杂度为O(NS\Gamma ) ,其中,N 和S 分别表示交通感知站点和边缘节点的数量,\Gamma 表示求解线性规划问题{\rm{P1}}' 的多项式时间耗费[32]. 因此,算法1具有多项式时间复杂度,即O(N{S^2}\Gamma ) ,证毕.3.2 基于低秩理论的感知数据自适应恢复
3.2.1 基于低秩理论的感知数据恢复
1) 基于低秩分析的问题转化. 利用实际智能交通感知数据集(详见4. 1节),分别基于时间维度和空间维度,分析不同时间和不同站点交通感知数据的低秩性. 首先,分析在时间维度上的低秩特性. 从数据集中随机选取4个交通站点52h的感知数据组成矩阵,并对该矩阵进行奇异值分解. 如图2(a)所示,矩阵前10个最大奇异值占全部奇异值之和的85%以上,即奇异值累积贡献率为85%. 类似地,分析交通感知数据在空间维度的低秩特性. 对25个交通站点感知数据构成的矩阵进行奇异值分解,如图2(b)所示,前5个最大奇异值占全部奇异值之和的90%以上. 根据低秩理论[36]:如果矩阵中存在少量奇异值之和占所有奇异值总和的比值较大,则该矩阵可以近似认为低秩矩阵. 因此分析可得,交通感知数据矩阵在时间维度和空间维度上都是近似低秩的.
基于上述结论可得,
{{\boldsymbol{M}}_{js}} 在时空维度是近似低秩的. 由文献[37]可知,如果矩阵是近似低秩的,则通过采样其元素可以找到另一个低秩矩阵{\boldsymbol{X}} 来近似表示该矩阵. 因此子问题{\text{P2}} 可等价转化为:({\text{P2}}')\min \;\:{\rm{rank}}({\boldsymbol{X}}), (18) {\text{s}}{\text{.t.}}\;\;{P_\varOmega }({\boldsymbol{X}}) = {P_\varOmega }({{\boldsymbol{M}}_{js}}), (19) 其中
{\rm{rank}}( · ) 表示矩阵的秩函数,{P_\varOmega }( · ) 表示投影采样算子. 因为该秩函数是非连续和非凸的,求解非常困难,且最小化矩阵秩即最小化矩阵非零奇异值个数,可近似看作最小化矩阵奇异值总和(即核范数最小)[37]. 因此,为便于求解,可用核范数\|{\boldsymbol{X}}\|^{*} 函数近似代替目标秩函数{\rm{rank}}({\boldsymbol{X}}) .2) 感知数据精确恢复. 受文献[38]启发,本文提出基于奇异值阈值截断(singular value thresholding, SVT)的缺失数据迭代恢复算法. 该算法的核心思想是在每次迭代中对矩阵进行奇异值分解,然后将较小奇异值置为0,构造新矩阵进行下一轮奇异值分解. 如算法2所示.
算法2. 基于低秩理论的感知数据自适应恢复算法.
输入:边缘节点整合的含缺失数据的矩阵
{{\boldsymbol{M}}_{js}} ;输出:完整交通感知数据矩阵
{{\boldsymbol{X}}^{{\rm{opt}}}} .① 根据矩阵
{{\boldsymbol{M}}_{js}} 及其缺失元素生成投影采样算 子{P_\varOmega }({{\boldsymbol{M}}_{js}}) ;② 初始化
{{\boldsymbol{Y}}^0} = {k_0}\delta {P_\varOmega }({{\boldsymbol{M}}_{js}}) ;③ for
k = 1 to{k_{\max }} ④ 基于矩阵
{{\boldsymbol{Y}}^{k - 1}} 的奇异值分解,得到{{\boldsymbol{U}}^{k - 1}},{{\boldsymbol{\varSigma }}^{k - 1}}, {{\boldsymbol{V}}^{k - 1}} ;⑤ 基于
{{\boldsymbol{U}}^{k - 1}},{{\boldsymbol{\varSigma }}^{k - 1}},{{\boldsymbol{V}}^{k - 1}} ,根据式(21)(22)计算新 矩阵{{\boldsymbol{X}}^k} ;⑥ if
\Vert {P}_{\varOmega }({{\boldsymbol{X}}}^{k}-{{\boldsymbol{M}}}_{js}){\Vert }_{\text{F}}/\Vert {P}_{\varOmega }({{\boldsymbol{M}}}_{js}){\Vert }_{\text{F}}\le \varepsilon ⑦
{{\boldsymbol{X}}^{{\text{opt}}}} = {{\boldsymbol{X}}^k} ;⑧ break;
⑨ else
⑩ 根据式(20)计算新矩阵
{{\boldsymbol{Y}}^k} ;⑪ end if
⑫ end for
⑬ 基于
{{\boldsymbol{X}}^{{\rm{opt}}}} ,根据式(26)估计恢复矩阵秩{r_{js}} ;⑭ 根据矩阵的秩估计
{r_{js}} ,计算非缺失下限{m_j} , 反馈调整数据分配,更新矩阵{{\boldsymbol{M}}_{js}} .算法2主要包括2步:
1)奇异值分解 (行④). 对
{{\boldsymbol{Y}}^{k - 1}} 进行奇异值分解为{{\boldsymbol{U}}^{k - 1}},{{\boldsymbol{\varSigma }}^{k - 1}},{{\boldsymbol{V}}^{k - 1}} .2)新矩阵构造(行⑤~⑩). 首先,用
\delta _b^{k - 1} 表示{{\boldsymbol{\varSigma }}^{k - 1}} 中第b 个对角元素即奇异值(总个数为B );然后,根据式(20),基于{{\boldsymbol{U}}^{k - 1}},{{\boldsymbol{\varSigma }}^{k - 1}},{{\boldsymbol{V}}^{k - 1}} 构造用于下次迭代的新矩阵{{\boldsymbol{Y}}^k} ,其中\varOmega 为采样元素索引集合.{\boldsymbol{Y}}_{a,b}^k = \left\{ \begin{array}{*{20}{c}} {0,} & {\forall (a,b) \notin \varOmega ,}\\ {{\boldsymbol{Y}}_{a,b}^{k - 1} + \delta ({{({{\boldsymbol{M}}_{js}})}_{a,b}} - {\boldsymbol{X}}_{a,b}^k),} &{\forall (a,b) \in \varOmega ,} \end{array}\right. (20) {{\boldsymbol{X}}^k} = \displaystyle\sum_{b = 1}^B(\delta _b^{*k - 1} - \tau ){\boldsymbol{U}}_b^{k - 1}{\boldsymbol{V}}_b^{k - 1}, (21) \delta _b^{*k - 1} = \left\{ {\begin{aligned} &{0,}\quad {\forall \delta _b^{k - 1} \leqslant \tau ,} \\ &{\delta _b^{k - 1},} \quad {\forall \delta _b^{k - 1} > \tau . } \end{aligned}} \right. (22) 以上2步相互迭代,直至满足以下任意一个迭代停止条件:①迭代达到最大次数
{k_{\max }} (即行③);②恢复得到的矩阵{{\boldsymbol{X}}^k} 与原矩阵{{\boldsymbol{M}}_{js}} 误差不大于\varepsilon (即行⑥).3.2.2 基于奇异值分解的非缺失下限估计
当
{{\boldsymbol{M}}_{js}} 中缺失元素过多,即边缘节点{e_s} 处感知数据量较少,而感知数据间的相关性程度又较小时,很难精确地进行缺失数据恢复. 因此,为保证数据恢复精度,每个边缘节点分配到的感知数据量需满足一定下限,即非缺失下限. 根据矩阵自由度理论[39],精确恢复一个含有缺失元素的矩阵需要的最少采样元素个数为N \geqslant r({n_1} + {n_2} - r), (23) 其中
r 表示该矩阵的秩即元素间相关性程度,{n_1} 和{n_2} 分别表示该矩阵的行列数. 由式(23)可知,矩阵元素间相关性程度越小,精确恢复缺失数据所需的最少采样元素个数越多.根据式(23),当计算基于算法2恢复得到的完整矩阵
{{\boldsymbol{X}}^{{\rm{opt}}}} 的非缺失下限{m_j} 时,{n_1} 和{n_2} 很容易基于其行列数得到. 而矩阵的秩{r_{js}} 需进行估计,下面基于奇异值分解估计矩阵{{\boldsymbol{X}}^{{\rm{opt}}}} 的秩{r_{js}} :首先对矩阵
{{\boldsymbol{X}}^{{\text{opt}}}} 进行奇异值分解为{{\boldsymbol{X}}^{{\text{opt}}}} = {{\boldsymbol{U}}_{m \times m}}{{\boldsymbol{\varSigma }}_{m \times n}}{\boldsymbol{V}}_{n \times n}^{\text{T}}, (24) {\boldsymbol{\varSigma }} = \left( {\begin{array}{*{20}{c}} {{\sigma _1}}&{\;\;\:}&{\;\;\:} \\ {\;\;\:}& \ddots &{\;\;\:} \\ {\;\;\:}&{\;\;\:}&{{\sigma _n}} \end{array}} \right), (25) 其中
{\sigma }_{1}\geqslant {\sigma }_{2}\geqslant \cdots\geqslant {\sigma }_{n}\geqslant 0 .由于矩阵的低秩性,因此,可用占全部奇异值总和比例为
\eta {\text{ }}(\eta \in [0,1]) 的最少奇异值个数作为矩阵秩的估计值:{r}_{js}=\mathrm{min}\left\{{r\left|\frac{{\displaystyle \sum _{b=1}^{r}{\sigma }_{b}}}{\displaystyle\sum_{b=1}^{B}{\sigma }_{b}}\geqslant \eta\right.} \right\}, (26) 其中
B 为矩阵非零奇异值总个数.最后,根据矩阵秩的估计值
{r}_{js} ,基于式(23)计算非缺失下限,并将该结果反馈至云服务器重新调整感知数据分配方案(子问题{\text{P}}{{\text{1}}^\prime } ),以保证缺失感知数据的精确恢复.4. 基于大规模交通感知数据集的实验评估
4.1 数据集和实验方法介绍
1) 大规模智能交通感知数据集介绍. 本文利用澳大利亚新南威尔士州的交通流量监控系统TVVS的感知数据集进行实验评估. 该感知数据集由部署在道路旁的大约600个交通感知站点的交通监控感知系统产生,基本覆盖整个新南威尔士州. 本文主要采用每个交通站点的交通流量感知数据,采样间隔为1h,采样时间长度为12个月,即2018-01-01—2018-12-31.
2) 实验方法介绍. 为评估边缘节点部署性能,本文参照实际场景,设定交通站点数据量规模和边缘节点容量等其他参数,同时通过变化交通站点数据量规模、边缘节点容量及部署成本预算,分别评估3种因素对边缘节点部署性能,即所有节点能同时处理的总感知数据量的影响. 在实验评估中,同时考虑了2种不同规模的网络,即大规模网络
(N = 100, S = 20) 和小规模网络(N = 10,S = 5) .为了充分地评估交通感知数据恢复的性能,随机地选择24个交通感知站点,将它们中无缺失的感知数据组成实验数据矩阵. 进一步地,在评估过程中,首先变化缺失数据长度(即矩阵缺失元素个数);然后固定缺失数据长度,变化交通感知站点的数量,以评估站点数量对缺失感知数据恢复性能的影响.
与当前多数边缘节点部署工作[19, 28,40]类似,为了全面地评估边缘节点的部署性能,本文采用3种性能不同的典型对比算法,即最优的、近似最优的、一般的对比算法. 1) OPT. 即最优的边缘节点部署方案,基于暴力搜索对所有可能的部署方案进行穷举以获得最优解. 由于本文的边缘节点部署问题是NP-hard问题,因此,OPT具有指数级计算复杂度,只能适用于小规模网络. 2) HEU[41]. 即基于遗传算法的近似最优启发式算法,将部署方案类比成生物种群,初始化若干方案,并通过模拟自然界种群进化的过程(即遗传、交叉和变异),不断迭代更新以得到近似最优解. 3) RAN. 即随机部署算法,将边缘节点随机地部署在任意交通站点处.
为了充分评估缺失感知数据恢复性能,采用3种常用的数据恢复算法作为对比算法:1) MR. 即基于回归拟合的缺失数据恢复算法,利用非缺失数据拟合多项式,从而基于该多项式补全缺失数据. 2) KNN[42]. 基于K近邻的缺失数据恢复算法,利用感知数据的时空相关性,通过距离缺失元素最近的k个数据的平均值来估计该缺失值. 3) RF[43]. 基于随机森林回归的缺失感知数据恢复算法,即基于无缺失数据训练随机森林模型,用该模型预测缺失数据.
在实验评估中,本文采用3种评估指标:1) 边缘节点处理总数据量,即所有部署边缘节点接收到的总感知数据量,如式(1);2) 平均绝对误差(mean absolute error, MAE),即补全数据矩阵元素的估计值与真值之间误差的绝对平均值,如式(27);3) 平均绝对百分比误差(mean absolute percentage error, MAPE),即补全数据矩阵元素的估计误差与真值的百分比平均值,如式(28).
{{{{MAE}}}} = \frac{1}{T}\mathop \sum \limits_{t = 1}^T |{v_t} - {\hat v_t}|, (27) {{{{MAPE}}}} = \frac{1}{T}\mathop \sum \limits_{t = 1}^T \left|\frac{{{v_t} - {{\hat v}_t}}}{{{v_t}}}\right|. (28) 4.2 实验结果
1) 边缘节点部署性能评估
①评估不同交通感知站点的感知数据规模对边缘节点部署性能的影响. 如图3所示,变化交通站点数据规模为实际规模的1.0~2.0倍. 实验结果表明,在小规模网络场景下本文算法比RAN算法性能平均提升25%. 同时,本文算法与HEU算法都能达到OPT算法的95%以上. 主要原因是小规模网络场景中,满足约束的可行部署方案较少,使得HEU算法有较大概率获得性能较优的解,从而性能与本文算法以及OPT算法接近. 但是,在大规模网络场景中,本文算法比HEU算法平均提升性能8.8%,比RAN算法平均提升性能31.6%.
②评估不同边缘节点容量对边缘节点部署性能的影响. 如图4所示,本文算法比RAN算法,在小规模和大规模网络场景中性能分别平均提升25.9%和28.1%. 虽然本文算法和HEU算法在小规模网络场景中较为接近,都达到了OPT性能的95%以上,但是在大规模场景下本文算法比HEU性能平均提升10.3%.
③评估不同部署成本预算对边缘节点部署性能的影响. 如图5所示,本文算法比RAN算法,在小规模和大规模网络场景中性能分别平均提升45.2%和32.5%. 同时,在小规模场景中,本文算法和HEU算法都能达到OPT性能的92%. 但是,在大规模网络场景下,本文算法的性能比HEU算法平均提高11.9%.
2) 交通感知数据恢复精度评估
为了评估本文所提缺失感知数据恢复算法的性能,分别与3种常见缺失数据恢复算法在变化缺失长度和交通站点数量情况下进行比较.
①评估不同感知数据缺失长度对缺失数据恢复精度的影响. 如图6所示,实验结果表明,随着感知数据缺失长度的增大,缺失数据恢复的精度也不断降低. 该结果符合常理,即缺失的感知数据量越大,则数据所包含信息量就越小,因此,数据恢复的精度也就越差. 同时,与RF算法、MR算法和KNN算法比较,本文算法的MAE指标分别平均降低48.0%,65.1%, 74.8%,MAPE指标分别平均降低47.8%,62.4%,78.9%.
此外,当缺失数据长度较大时,MR和KNN算法恢复的结果不够理想,这是因为基于均值恢复和多项式拟合恢复数据的算法对数据的非缺失程度要求较高,所以当数据缺失程度较大时,选择SVT算法能够保证较好的补全精度.
②评估不同交通站点数量对缺失数据恢复精度的影响. 如图7所示,实验结果表明,随着交通站点数量的增多,缺失数据的恢复精度也不断提高. 这是因为随着交通站点数量的增加,矩阵中非缺失元素的比例增加,从而使得缺失数据的恢复精度也不断提高. 此外,与RF算法、MR算法和KNN算法比较,本文算法的MAPE指标分别平均降低50.2%,60.9%,43.8%,MAE指标分别平均降低51.2%,64.5%,47.1%. 同理,由于KNN和MR算法对矩阵中元素非缺失程度的依赖性,使得其在交通站点数量较少时表现出来的性能不够理想.
此外,本文还对SVT算法的收敛性进行了验证. 首先,随机选择24个交通站点24天的感知数据组成实验数据矩阵;然后,利用SVT算法,设定不同迭代次数对矩阵进行恢复,得到的结果如图8(a)所示. 可以发现当迭代次数达到90次后,感知数据的恢复精度基本保持不变.
③评估缺失感知数据自适应恢复的性能. 具体地,随机选择16个交通站点14天内的感知数据组成组成实验数据矩阵.
首先,在实验前,先探究了该矩阵秩随时间变化的情况,结果如图8(b)所示. 可以发现,矩阵秩大小会随时间而产生波动,如第3天(4月25日,澳大利亚退伍老兵日)、第6天和第7天(周末)的感知数据矩阵秩产生了较明显的下降.
然后,分别采用本文提出的自适应缺失数据恢复算法,即根据恢复结果,计算非缺失下限并调整采样率和非自适应恢复算法,即采样率不随恢复结果自适应变化,对该矩阵进行数据恢复. 实验结果如图9所示,自适应恢复算法比非自适应恢复算法的MAE指标和MAPE指标分别平均降低40.3%和40.4%. 主要原因是感知数据矩阵的秩在随时间波动,即感知数据的相关性程度随时间发生了变化. 而非自适应恢复算法并没有根据相关性程度变化及时调整元素采样率,如当相关性程度减小时,提高采样率,增加非缺失元素的比例. 而本文所提的自适应恢复算法充分考虑了这一因素,因此保证了数据的恢复精度,提高了系统恢复性能的鲁棒性.
此外,本文基于澳大利亚TVVS系统中600个交通站点的感知数据,构建基于边缘智能计算的大规模交通感知数据恢复原型系统,如图10所示.
5. 总结和展望
5.1 工作总结
本文提出一种基于边缘智能计算的城市交通感知数据自适应恢复系统,以解决高计算复杂度的边缘节点部署和高时空动态性的交通感知数据恢复问题. 首先,提出具有理论下界的边缘节点次优部署算法,以解决边缘节点部署这个NP-hard问题. 然后,提出基于低秩理论的缺失感知数据自适应恢复算法,利用低秩理论和奇异值分解,基于恢复结果估计感知数据矩阵的非缺失下限,并根据非缺失下限值的反馈,自适应调整交通站点感知数据分配,从而提高数据恢复的精确性和鲁棒性. 最后,基于实际大规模交通感知数据集构建原型系统,并进行实验评估,实验结果验证所提算法的有效性和鲁棒性.
5.2 研究展望
在将来的工作中,进一步改进和完善本文存在的缺点和不足,主要包括3个方面:1) 交通站点的拓扑关系与它们感知数据的相关性有关,因此,如何利用交通站点道路拓扑图来进一步提高缺失感知数据精度是下一步的研究工作. 2) 本文只是以交通流量这种典型的交通感知数据作为例子研究交通感知数据恢复且只考虑了来自静态交通感知站点的感知数据. 下一步将延伸和扩展到更多不同来源种类的感知数据,如来自无人机感知[44]和人群感知[45]的城市感知数据等. 3) 本文在恢复交通感知数据时,主要利用感知数据之间的时空相关性,但这些感知数据之间还存在其他多维度的联系,如数据类型等. 下一步将结合其他多维相关性进一步提高恢复精度.
致 谢 感谢重庆大学计算机学院张乃凡、程梁华、李耀宇对本文所做的贡献!
作者贡献声明:向朝参和程文辉提出了论文创新点,设计了论文实验方案,并撰写了论文;张昭实现了论文算法;焦贤龙、屈毓锛、陈超和戴海鹏指导了论文写作.
-
表 1 因果方法在可解释性问题上的应用
Table 1 Application of Causal Methods on Interpretability Problems
表 2 因果方法在可迁移性问题上的应用
Table 2 Application of Causal Methods on Transferability Problems
表 3 因果方法在鲁棒性问题上的应用
Table 3 Application of Causal Methods on Robustness Problems
分类 子类别 典型思路和方法 反事实数据增强 伪相关特征反事实 构造额外训练数据,在保持预测结果不变的前提下微调数据[88-93] 因果特征反事实 构造额外训练数据,更改关键因果特征并修改预测结果[92-95] 因果效应校准 基于后门调整 根据对问题的认识指出混杂因素,对其估计后消除影响[96-99] 基于中介分析 根据对问题的认识指出中介变量,对其估计后消除影响[97,100-102] 不变性学习 稳定学习 将每个特征视为处理变量,通过样本加权消除混杂,识别因果特征[103-107] 不变因果预测 基于多环境训练数据,利用假设检验确定因果特征集合[108-110] 不变风险最小化 基于多环境训练数据,在模型优化目标中添加跨环境不变约束,学习因果特征[111- 113] 表 4 因果方法在公平性问题上的应用
Table 4 Application of Causal Methods on Fairness Problems
-
[1] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436−444
[2] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[C] //Proc of the IEEE Int Conf on Computer Vision. Piscataway, NJ: IEEE, 2015: 1026−1034 [3] Brock A, Donahue J, Simonyan K. Large scale GAN training for high fidelity natural image synthesis [C/OL] //Proc of the 7th Int Conf on Learning Representations. 2019 [2021-11-03]. https://openreview.net/pdf?id=B1xsqj09Fm
[4] Brown T B, Mann B, Ryder N, et al. Language models are few-shot learners[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 1877−1901
[5] Silver D, Huang A, Maddison C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484−489
[6] Senior A W, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning[J]. Nature, 2020, 577(7792): 706−710
[7] Gunning D, Aha D. DARPA’s explainable artificial intelligence (XAI) program[J]. AI Magazine, 2019, 40(2): 44−58
[8] Szegedy C, Zaremba W, Sutskever I, et al. Intriguing properties of neural networks[C/OL] //Proc of the 2nd Int Conf on Learning Representations. 2014 [2021-11-03]. https://arxiv.org/abs/1312.6199
[9] Barocas S, Hardt M, Narayanan A. Fairness in machine learning [EB/OL]. 2017 [2021-11-13]. https://fairmlbook.org/pdf/fairmlbook.pdf
[10] Pearl J, Mackenzie D. The Book of Why: The New Science of Cause and Effect[M]. New York: Basic Books, 2018
[11] Pearl J. Theoretical impediments to machine learning with seven sparks from the causal revolution[J]. arXiv preprint, arXiv: 1801.04016, 2018
[12] 苗旺, 刘春辰, 耿直. 因果推断的统计方法[J]. 中国科学: 数学, 2018, 48(12): 1753-1778 Miao Wang, Liu Chunchen, Geng Zhi. Statistical approaches for causal inference [J]. SCIENTIA SINICA Mathematica, 2018, 48(12): 1753-1778 (in Chinese)
[13] Guo Ruocheng, Cheng Lu, Li Jundong, et al. A survey of learning causality with data: Problems and methods[J]. ACM Computing Surveys, 2020, 53(4): 1−37
[14] Kuang Kun, Li Lian, Geng Zhi, et al. Causal inference [J]. Engineering, 2020, 6(3): 253−263
[15] Schölkopf B. Causality for machine learning [J]. arXiv preprint, arXiv: 1911.10500, 2019
[16] Schölkopf B, Locatello F, Bauer S, et al. Toward causal representation learning[J]. Proceedings of the IEEE, 2021, 109(5): 612−634
[17] Splawa-Neyman J, Dabrowska D M, Speed T P. On the application of probability theory to agricultural experiments. Essay on principles. Section 9[J]. Statistical Science, 1990, 5(4): 465−472
[18] Rubin D B. Estimating causal effects of treatments in randomized and nonrandomized studies[J]. Journal of Educational Psychology, 1974, 66(5): 688−701
[19] Pearl J. Causality[M]. Cambridge, UK: Cambridge University Press, 2009
[20] Granger C W J. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica, 1969, 37(3): 424−438
[21] Rubin D B. Randomization analysis of experimental data: The Fisher randomization test comment[J]. Journal of the American Statistical Association, 1980, 75(371): 591−593
[22] Rosenbaum P R, Rubin D B. The central role of the propensity score in observational studies for causal effects[J]. Biometrika, 1983, 70(1): 41−55
[23] Hirano K, Imbens G W, Ridder G. Efficient estimation of average treatment effects using the estimated propensity score[J]. Econometrica, 2003, 71(4): 1161−1189
[24] Robins J M, Rotnitzky A, Zhao Lueping. Estimation of regression coefficients when some regressors are not always observed[J]. Journal of the American Statistical Association, 1994, 89(427): 846−866
[25] Dudík M, Langford J, Li Lihong. Doubly robust policy evaluation and learning[C] //Proc of the 28th Int Conf on Machine Learning. Madison, WI: Omnipress, 2011: 1097−1104
[26] Kuang Kun, Cui Peng, Li Bo, et al. Estimating treatment effect in the wild via differentiated confounder balancing[C] //Proc of the 23rd ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2017: 265−274
[27] Imbens G W, Rubin D B. Causal Inference in Statistics, Social, and Biomedical Sciences[M]. Cambridge, UK: Cambridge University Press, 2015
[28] Yao Liuyi, Chu Zhixuan, Li Sheng, et al. A survey on causal inference [J]. arXiv preprint, arXiv: 2002.02770, 2020
[29] Pearl J. Causal diagrams for empirical research[J]. Biometrika, 1995, 82(4): 669−688
[30] Spirtes P, Glymour C. An algorithm for fast recovery of sparse causal graphs[J]. Social Science Computer Review, 1991, 9(1): 62−72
[31] Verma T, Pearl J. Equivalence and synthesis of causal models[C] //Proc of the 6th Annual Conf on Uncertainty in Artificial Intelligence. Amsterdam: Elsevier, 1990: 255−270
[32] Spirtes P, Glymour C N, Scheines R, et al. Causation, Prediction, and Search[M]. Cambridge, MA: MIT Press, 2000
[33] Schwarz G. Estimating the dimension of a model[J]. The Annals of Statistics, 1978, 6(2): 461−464
[34] Chickering D M. Optimal structure identification with greedy search[J]. Journal of Machine Learning Research, 2002, 3(Nov): 507−554 [35] Shimizu S, Hoyer P O, Hyvärinen A, et al. A linear non-Gaussian acyclic model for causal discovery[J]. Journal of Machine Learning Research, 2006, 7(10): 2003−2030
[36] Zhang Kun, Hyvärinen A. On the identifiability of the post-nonlinear causal model[C] //Proc of the 25th Conf on Uncertainty in Artificial Intelligence. Arlington, VA: AUAI Press, 2009: 647−655
[37] Pearl J. Direct and indirect effects[C] //Proc of the 17th Conf on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers Inc, 2001: 411−420
[38] VanderWeele T. Explanation in Causal Inference: Methods for Mediation and Interaction[M]. Oxford, UK: Oxford University Press, 2015
[39] 陈珂锐,孟小峰. 机器学习的可解释性[J]. 计算机研究与发展,2020,57(9):1971−1986 doi: 10.7544/issn1000-1239.2020.20190456 Chen Kerui, Meng Xiaofeng. Interpretation and understanding in machine learning[J]. Journal of Computer Research and Development, 2020, 57(9): 1971−1986 (in Chinese) doi: 10.7544/issn1000-1239.2020.20190456
[40] Ribeiro M T, Singh S, Guestrin C. “Why should I trust you?” Explaining the predictions of any classifier[C] //Proc of the 22nd ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1135−1144
[41] Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C] //Proc of the IEEE Int Conf on Computer Vision. Piscataway, NJ: IEEE, 2017: 618-626 [42] Sundararajan M, Taly A, Yan Qiqi. Axiomatic attribution for deep networks[C] //Proc of the 34th Int Conf on Machine Learning. Cambridge, MA: JMLR, 2017: 3319−3328
[43] Lundberg S M, Lee S I. A unified approach to interpreting model predictions[C] //Proc of the 31st Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2017: 4765−4774
[44] Alvarez-Melis D, Jaakkola T. A causal framework for explaining the predictions of black-box sequence-to-sequence models[C] //Proc of the 2017 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2017: 412−421 [45] Schwab P, Karlen W. CXPlain: Causal explanations for model interpretation under uncertainty[C] //Proc of the 33rd Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2019: 10220−10230
[46] Chattopadhyay A, Manupriya P, Sarkar A, et al. Neural network attributions: A causal perspective[C] //Proc of the 36th Int Conf on Machine Learning. Cambridge, MA: JMLR, 2019: 981−990
[47] Frye C, Rowat C, Feige I. Asymmetric Shapley values: Incorporating causal knowledge into model-agnostic explainability[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 1229−1239
[48] Heskes T, Sijben E, Bucur I G, et al. Causal Shapley values: Exploiting causal knowledge to explain individual predictions of complex models [C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 4778−4789
[49] Goyal Y, Wu Ziyan, Ernst J, et al. Counterfactual visual explanations[C] //Proc of the 36th Int Conf on Machine Learning. Cambridge, MA: JMLR, 2019: 2376−2384
[50] Wang Pei, Vasconcelos N. SCOUT: Self-aware discriminant counterfactual explanations[C] //Proc of the 33rd IEEE/CVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 8981−8990
[51] Hendricks L A, Hu Ronghang, Darrell T, et al. Generating counterfactual explanations with natural language[J]. arXiv preprint, arXiv: 1806.09809, 2018
[52] Chang Chunhao, Creager E, Goldenberg A, et al. Explaining image classifiers by counterfactual generation[C/OL] //Proc of the 7th Int Conf on Learning Representations, 2019 [2021-11-03]. https://openreview.net/pdf?id=B1MXz20cYQ
[53] Kanehira A, Takemoto K, Inayoshi S, et al. Multimodal explanations by predicting counterfactuality in videos[C] //Proc of the 32nd IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2019: 8594−8602
[54] Akula A R, Wang Shuai, Zhu Songchun. CoCoX: Generating conceptual and counterfactual explanations via fault-lines[C] //Proc of the 34th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2020: 2594−2601
[55] Madumal P, Miller T, Sonenberg L, et al. Explainable reinforcement learning through a causal lens[C] //Proc of the 34th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2020: 2493−2500
[56] Mothilal R K, Sharma A, Tan C. Explaining machine learning classifiers through diverse counterfactual explanations[C] //Proc of the 2020 Conf on Fairness, Accountability, and Transparency. New York: ACM, 2020: 607−617 [57] Albini E, Rago A, Baroni P, et al. Relation-based counterfactual explanations for Bayesian network classifiers[C] //Proc of the 29th Int Joint Conf on Artificial Intelligence, Red Hook, NY: Curran Associates Inc, 2020: 451−457
[58] Kenny E M, Keane M T. On generating plausible counterfactual and semi-factual explanations for deep learning[C] //Proc of the 35th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2021: 11575−11585
[59] Abrate C, Bonchi F. Counterfactual graphs for explainable classification of brain networks[J]. arXiv preprint, arXiv: 2106.08640, 2021
[60] Yang Fan, Alva S S, Chen Jiahao, et al. Model-based counterfactual synthesizer for interpretation[J]. arXiv preprint, arXiv: 2106.08971, 2021
[61] Parmentier A, Vidal T. Optimal counterfactual explanations in tree ensembles[J]. arXiv preprint, arXiv: 2106.06631, 2021
[62] Besserve M, Mehrjou A, Sun R, et al. Counterfactuals uncover the modular structure of deep generative models[C/OL] //Proc of the 8th Int Conf on Learning Representations. 2020 [2021-11-03]. https://openreview.net/pdf?id=SJxDDpEKvH
[63] Kanamori K, Takagi T, Kobayashi K, et al. DACE: Distribution-aware counterfactual explanation by mixed-integer linear optimization[C] //Proc of the 19th Int Joint Conf on Artificial Intelligence. Red Hook, NY: Curran Associates Inc, 2020: 2855−2862
[64] Kanamori K, Takagi T, Kobayashi K, et al. Ordered counterfactual explanation by mixed-integer linear optimization[C] //Proc of the 35th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2021: 11564−11574
[65] Tsirtsis S, Gomez-Rodriguez M. Decisions, counterfactual explanations and strategic behavior[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 16749−16760
[66] Karimi A H, von Kügelgen B J, Schölkopf B, et al. Algorithmic recourse under imperfect causal knowledge: A probabilistic approach[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 265−277
[67] Rojas-Carulla M, Schölkopf B, Turner R, et al. Invariant models for causal transfer learning[J]. The Journal of Machine Learning Research, 2018, 19(1): 1309−1342
[68] Guo Jiaxian, Gong Mingming, Liu Tongliang, et al. LTF: A label transformation framework for correcting target shift[C] //Proc of the 37th Int Conf on Machine Learning. Cambridge, MA: JMLR, 2020: 3843−3853
[69] Cai Ruichu, Li Zijian, Wei Pengfei, et al. Learning disentangled semantic representation for domain adaptation[C] //Proc of the 28th Int Joint Conf on Artificial Intelligence. Red Hook, NY: Curran Associates Inc, 2019: 2060−2066
[70] Zhang Kun, Schölkopf B, Muandet K, et al. Domain adaptation under target and conditional shift[C] //Proc of the 30th Int Conf on Machine Learning. Cambridge, MA: JMLR, 2013: 819−827
[71] Gong Mingming, Zhang Kun, Liu Tongliang, et al. Domain adaptation with conditional transferable components[C] //Proc of the 33rd Int Conf on Machine Learning. Cambridge, MA: JMLR, 2016: 2839−2848
[72] Teshima T, Sato I, Sugiyama M. Few-shot domain adaptation by causal mechanism transfer[C] //Proc of the 37th Int Conf on Machine Learning. Cambridge, MA: JMLR, 2020: 9458−9469
[73] Edmonds M, Ma Xiaojian, Qi Siyuan, et al. Theory-based causal transfer: Integrating instance-level induction and abstract-level structure learning[C] //Proc of the 34th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2020: 1283−1291
[74] Etesami J, Geiger P. Causal transfer for imitation learning and decision making under sensor-shift[C] //Proc of the 34th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2020: 10118−10125
[75] Yue Zhongqi, Zhang Hanwang, Sun Qianru, et al. Interventional few-shot learning[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 2734−2746
[76] Zhang Kun, Gong Mingming, Stojanov P, et al. Domain adaptation as a problem of inference on graphical models[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 4965−4976
[77] Schölkopf B, Janzing D, Peters J, et al. On causal and anticausal learning[C] //Proc of the 29th Int Conf on Machine Learning. Madison, WI: Omnipress, 2012: 459−466
[78] Zhang Kun, Gong Mingming, Schölkopf B. Multi-source domain adaptation: A causal view[C] //Proc of the 29th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2015: 3150−3157
[79] Bagnell J A. Robust supervised learning[C] //Proc of the 20th National Conf on Artificial Intelligence. Menlo Park, CA: AAAI, 2005: 714−719
[80] Hu Weihua, Niu Gang, Sato I, et al. Does distributionally robust supervised learning give robust classifiers?[C] //Proc of the 35th Int Conf on Machine Learning. Cambridge, MA: JMLR, 2018: 2029−2037
[81] Rahimian H, Mehrotra S. Distributionally robust optimization: A review[J]. arXiv preprint, arXiv: 1908.05659, 2019
[82] Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[C/OL] //Proc of the 5th Int Conf on Learning Representations. 2017 [2021-11-14]. https://openreview.net/pdf?id=B1xsqj09Fm
[83] Xu Han, Ma Yao, Liu Haochen, et al. Adversarial attacks and defenses in images, graphs and text: A review[J]. International Journal of Automation and Computing, 2020, 17(2): 151−178
[84] Gururangan S, Swayamdipta S, Levy O, et al. Annotation artifacts in natural language inference data[C] //Proc of the 16th Conf of the North American Chapter of the ACL: Human Language Technologies, Vol 2. Stroudsburg, PA: ACL, 2018: 107−112
[85] Zhang Guanhua, Bai Bing, Liang Jian, et al. Selection bias explorations and debias methods for natural language sentence matching datasets[C] //Proc of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2019: 4418−4429
[86] Clark C, Yatskar M, Zettlemoyer L. Don’t take the easy way out: Ensemble based methods for avoiding known dataset biases[C] //Proc of the 2019 Conf on Empirical Methods in Natural Language Processing and the 9th Int Joint Conf on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA: ACL, 2019: 4060−4073 [87] Cadene R, Dancette C, Cord M, et al. Rubi: Reducing unimodal biases for visual question answering[C] //Proc of the 33rd Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2019: 841−852
[88] Lu Kaiji, Mardziel P, Wu Fangjing, et al. Gender bias in neural natural language processing[G] //LNCS 12300: Logic, Language, and Security: Essays Dedicated to Andre Scedrov on the Occasion of His 65th Birthday. Berlin: Springer, 2020: 189−202 [89] Maudslay R H, Gonen H, Cotterell R, et al. It’s all in the name: Mitigating gender bias with name-based counterfactual data substitution[C] //Proc of the 2019 Conf on Empirical Methods in Natural Language Processing and the 9th Int Joint Conf on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA: ACL, 2019: 5270−5278 [90] Zmigrod R, Mielke S J, Wallach H, et al. Counterfactual data augmentation for mitigating gender stereotypes in languages with rich morphology[C] //Proc of the 57th Annual Meeting of the ACL. Stroudsburg, PA: ACL, 2019: 1651−1661
[91] Kaushik D, Hovy E, Lipton Z. Learning the difference that makes a difference with counterfactually-augmented data[C/OL] //Proc of the 8th Int Conf on Learning Representations. 2020 [2021-11-14]. https://openreview.net/pdf?id=Sklgs0NFvr
[92] Agarwal V, Shetty R, Fritz M. Towards causal VQA: Revealing and reducing spurious correlations by invariant and covariant semantic editing[C] //Proc of the 33rd IEEE/CVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 9690−9698
[93] Chang Chunhao, Adam G A, Goldenberg A. Towards robust classification model by counterfactual and invariant data generation[C] //Proc of the 34th IEEE/CVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2021: 15212−15221
[94] Wang Zhao, Culotta A. Robustness to spurious correlations in text classification via automatically generated counterfactuals[C] //Proc of the 35th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2021: 14024−14031
[95] Chen Long, Yan Xin, Xiao Jun, et al. Counterfactual samples synthesizing for robust visual question answering[C] //Proc of the 33rd IEEE/CVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 10800−10809
[96] Wu Yiquan, Kuang Kun, Zhang Yating, et al. De-biased court’s view generation with causality[C] //Proc of the 2020 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 763−780 [97] Qi Jia, Niu Yulei, Huang Jianqiang, et al. Two causal principles for improving visual dialog[C] //Proc of the 33rd IEEE/CVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 10860−10869
[98] Wang Tan, Huang Jiangqiang, Zhang Hanwang, et al. Visual commonsense R-CNN[C] //Proc of the 33rd IEEE/CVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 10760−10770
[99] Zhang Dong, Zhang Hanwang, Tang Jinhui, et al. Causal intervention for weakly-supervised semantic segmentation[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 655−666
[100] Tang Kaihua, Niu Yulei, Huang Jianqiang, et al. Unbiased scene graph generation from biased training[C] //Proc of the 33rd IEEE/CVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 3716−3725
[101] Tang Kaihua, Huang Jianqiang, Zhang Hanwang. Long-tailed classification by keeping the good and removing the bad momentum causal effect[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 1513−1524
[102] Niu Yulei, Tang Kaihua, Zhang Hanwang, et al. Counterfactual VQA: A cause-effect look at language bias[C] //Proc of the 34th IEEE/CVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2021: 12700−12710
[103] Kuang Kun, Cui Peng, Athey S, et al. Stable prediction across unknown environments[C] //Proc of the 24th ACM SIGKDD Int Conf on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1617−1626
[104] Shen Zheyan, Cui Peng, Kuang Kun, et al. Causally regularized learning with agnostic data selection bias[C] //Proc of the 26th ACM Int Conf on Multimedia. New York: ACM, 2018: 411−419
[105] Kuang Kun, Xiong Ruoxuan, Cui Peng, et al. Stable prediction with model misspecification and agnostic distribution shift[C] //Proc of the 34th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2020: 4485−4492
[106] Shen Zheyan, Cui Peng, Zhang Tong, et al. Stable learning via sample reweighting[C] //Proc of the 34th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2020: 5692−5699
[107] Zhang Xingxuan, Cui Peng, Xu Renzhe, et al. Deep stable learning for out-of-distribution generalization[J]. arXiv preprint, arXiv: 2104.07876, 2021
[108] Peters J, Bühlmann P, Meinshausen N. Causal inference by using invariant prediction: Identification and confidence intervals[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2016, 78(5): 947−1012
[109] Christina H D, Nicolai M, Jonas P. Invariant causal prediction for nonlinear models[J/OL]. Journal of Causal Inference, 2018, 6(2): 20170016 [2021-11-15]. https://www.degruyter.com/document/doi/10.1515/jci-2017-0016/pdf
[110] Pfister N, Bühlmann P, Peters J. Invariant causal prediction for sequential data[J]. Journal of the American Statistical Association, 2019, 114(527): 1264−1276
[111] Arjovsky M, Bottou L, Gulrajani I, et al. Invariant risk minimization[J]. arXiv preprint, arXiv: 1907.02893, 2019
[112] Zhang A, Lyle C, Sodhani S, et al. Invariant causal prediction for block MDPs[C] //Proc of the 37th Int Conf on Machine Learning. Cambridge, MA: JMLR, 2020: 11214−11224
[113] Creager E, Jacobsen J H, Zemel R. Environment inference for invariant learning[C] //Proc of the 38th Int Conf on Machine Learning. Cambridge, MA: JMLR, 2021: 2189−2200
[114] Kaushik D, Setlur A, Hovy E H, et al. Explaining the efficacy of counterfactually augmented data[C/OL] //Proc of the 9th Int Conf on Learning Representations. 2021 [2021-11-14]. https://openreview.net/pdf?id=HHiiQKWsOcV
[115] Abbasnejad E, Teney D, Parvaneh A, et al. Counterfactual vision and language learning[C] //Proc of the 33rd IEEE/CVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 10044−10054
[116] Liang Zujie, Jiang Weitao, Hu Haifeng, et al. Learning to contrast the counterfactual samples for robust visual question answering[C] //Proc of the 2020 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 3285−3292 [117] Teney D, Abbasnedjad E, van den Hengel A. Learning what makes a difference from counterfactual examples and gradient supervision[C] //Proc of the 16th European Conf on Computer Vision. Berlin: Springer, 2020: 580−599
[118] Fu T J, Wang X E, Peterson M F, et al. Counterfactual vision-and-language navigation via adversarial path sampler[C] //Proc of the 16th European Conf on Computer Vision. Berlin: Springer, 2020: 71−86
[119] Parvaneh A, Abbasnejad E, Teney D, et al. Counterfactual vision-and-language navigation: Unravelling the unseen[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 5296−5307
[120] Sauer A, Geiger A. Counterfactual generative networks[C/OL] //Proc of the 9th Int Conf on Learning Representations. 2021 [2021-11-14]. https://openreview.net/pdf?id=BXewfAYMmJw
[121] Mao Chengzhi, Cha A, Gupta A, et al. Generative interventions for causal learning[C] //Proc of the 34th IEEE/CVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2021: 3947−3956
[122] Zeng Xiangji, Li Yunliang, Zhai Yuchen, et al. Counterfactual generator: A weakly-supervised method for named entity recognition[C] //Proc of the 2020 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 7270−7280 [123] Fu T J, Wang Xin, Grafton S, et al. Iterative language-based image editing via self-supervised counterfactual reasoning[C] //Proc of the 2020 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 4413−4422 [124] Pitis S, Creager E, Garg A. Counterfactual data augmentation using locally factored dynamics[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 3976−3990
[125] Zhang Junzhe, Kumor D, Bareinboim E. Causal imitation learning with unobserved confounders[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 12263−12274
[126] Coston A, Kennedy E, Chouldechova A. Counterfactual predictions under runtime confounding[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 4150−4162
[127] Atzmon Y, Kreuk F, Shalit U, et al. A causal view of compositional zero-shot recognition[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 1462−1473
[128] Yang Zekun, Feng Juan. A causal inference method for reducing gender bias in word embedding relations[C] //Proc of the 34th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2020: 9434−9441
[129] Schölkopf B, Hogg D W, Wang Dun, et al. Modeling confounding by half-sibling regression[J]. Proceedings of the National Academy of Sciences, 2016, 113(27): 7391−7398 doi: 10.1073/pnas.1511656113
[130] Shin S, Song K, Jang J H, et al. Neutralizing gender bias in word embedding with latent disentanglement and counterfactual generation[C] //Proc of the 2020 Conf on Empirical Methods in Natural Language Processing: Findings. Stroudsburg, PA: ACL, 2020: 3126−3140 [131] Yang Zekun, Liu Tianlin. Causally denoise word embeddings using half-sibling regression[C] //Proc of the 34th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2020: 9426−9433
[132] Yang Xu, Zhang Hanwang, Qi Guojin, et al. Causal attention for vision-language tasks[C] //Proc of the 34th IEEE/CVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2021: 9847−9857
[133] Tople S, Sharma A, Nori A. Alleviating privacy attacks via causal learning[C] //Proc of the 37th Int Conf on Machine Learning. Cambridge, MA: JMLR, 2020: 9537−9547
[134] Zhang Cheng, Zhang Kun, Li Yingzhen. A causal view on robustness of neural networks[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 289−301
[135] Sun Xinwei, Wu Botong, Liu Chang, et al. Latent causal invariant model[J]. arXiv preprint, arXiv: 2011.02203, 2020
[136] Mitrovic J, McWilliams B, Walker J C, et al. Representation learning via invariant causal mechanisms[C/OL] //Proc of the 9th Int Conf on Learning Representations. 2021 [2021-11-14]. https://openreview.net/pdf?id=9p2ekP904Rs
[137] Mahajan D, Tople S, Sharma A. Domain generalization using causal matching[J]. arXiv preprint, arXiv: 2006.07500, 2020
[138] Zhang Weijia, Liu Lin, Li Jiuyong. Robust multi-instance learning with stable instances[C] //Proc of the 24th European Conf on Artificial Intelligence. Ohmsha: IOS, 2020: 1682−1689
[139] Kleinberg J, Mullainathan S, Raghavan M. Inherent trade-offs in the fair determination of risk scores[J]. arXiv preprint, arXiv: 1609.05807, 2016
[140] Grgic-Hlaca N, Zafar M B, Gummadi K P, et al. The case for process fairness in learning: Feature selection for fair decision making[C/OL] //Proc of Symp on Machine Learning and the Law at the 30th Conf on Neural Information Processing Systems. 2016 [2021-11-17]. http: //www.mlandthelaw.org/papers/grgic.pdf [141] Dwork C, Hardt M, Pitassi T, et al. Fairness through awareness[C] //Proc of the 3rd Innovations in Theoretical Computer Science Conf. New York: ACM, 2012: 214−226
[142] Calders T, Kamiran F, Pechenizkiy M. Building classifiers with independency constraints[C] //Proc of the 9th IEEE Int Conf on Data Mining Workshops. Piscataway, NJ: IEEE, 2009: 13−18
[143] Hardt M, Price E, Srebro N. Equality of opportunity in supervised learning[C] //Proc of the 30th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2016: 3315−3323
[144] Xu Renzhe, Cui Peng, Kuang Kun, et al. Algorithmic decision making with conditional fairness[C] //Proc of the 26th ACM SIGKDD Int Conf on Knowledge Discovery & Data Mining. New York: ACM, 2020: 2125−2135
[145] Kusner M J, Loftus J, Russell C, et al. Counterfactual fairness[C] //Proc of the 31st Int Conf on Neural Information Processing Systems. New York: ACM, 2017: 4066−4076
[146] Kilbertus N, Rojas-Carulla M, Parascandolo G, et al. Avoiding discrimination through causal reasoning[C] //Proc of the 31st Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2017: 656−666
[147] Nabi R, Shpitser I. Fair inference on outcomes[C] //Proc of the 32nd AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2018: 1931−1940
[148] Chiappa S. Path-specific counterfactual fairness[C] //Proc of the 33rd AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2019: 7801−7808
[149] Wu Yongkai, Zhang Lu, Wu Xintao, et al. PC-fairness: A unified framework for measuring causality-based fairness[C] //Proc of the 33rd Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2019: 3404−3414
[150] Wu Yongkai, Zhang Lu, Wu Xintao. Counterfactual fairness: Unidentification, bound and algorithm[C] //Proc of the 28th Int Joint Conf on Artificial Intelligence. Red Hook, NY: Curran Associates Inc, 2019: 1438−1444
[151] Huang P S, Zhang Huan, Jiang R, et al. Reducing sentiment bias in language models via counterfactual evaluation[C] //Proc of the 2020 Conf on Empirical Methods in Natural Language Processing: Findings. Stroudsburg, PA: ACL, 2020: 65−83 [152] Garg S, Perot V, Limtiaco N, et al. Counterfactual fairness in text classification through robustness[C] //Proc of the 33rd AAAI/ACM Conf on AI, Ethics, and Society. Menlo Park, CA: AAAI, 2019: 219−226
[153] Hu Yaowei, Wu Yongkai, Zhang Lu, et al. Fair multiple decision making through soft interventions[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 17965−17975
[154] Goel N, Amayuelas A, Deshpande A, et al. The importance of modeling data missingness in algorithmic fairness: A causal perspective[C] //Proc of the 35th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2021: 7564−7573
[155] Xu Depeng, Wu Yongkai, Yuan Shuhan, et al. Achieving causal fairness through generative adversarial networks[C] //Proc of the 28th Int Joint Conf on Artificial Intelligence. Red Hook, NY: Curran Associates Inc, 2019: 1452−1458
[156] Khademi A, Lee S, Foley D, et al. Fairness in algorithmic decision making: An excursion through the lens of causality[C] //Proc of the 28th World Wide Web Conf. New York: ACM, 2019: 2907−2914
[157] Zhang Junzhe, Bareinboim E. Fairness in decision-making—The causal explanation formula[C] //Proc of the 32nd AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2018: 2037−2045
[158] Zhang Junzhe, Bareinboim E. Equality of opportunity in classification: A causal approach[C] //Proc of the 32nd Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2018: 3671−3681
[159] Wang Hao, Ustun B, Calmon F. Repairing without retraining: Avoiding disparate impact with counterfactual distributions[C] //Proc of the 36th Int Conf on Machine Learning. Cambridge, MA: JMLR, 2019: 6618−6627
[160] Creager E, Madras D, Pitassi T, et al. Causal modeling for fairness in dynamical systems[C] //Proc of the 37th Int Conf on Machine Learning. Cambridge, MA: JMLR, 2020: 2185−2195
[161] Swaminathan A, Joachims T. Batch learning from logged bandit feedback through counterfactual risk minimization[J]. The Journal of Machine Learning Research, 2015, 16(1): 1731−1755
[162] Swaminathan A, Joachims T. The self-normalized estimator for counterfactual learning[C] //Proc of the 29th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2015: 3231−3239
[163] Wu Hang, Wang May. Variance regularized counterfactual risk minimization via variational divergence minimization[C] //Proc of the 35th Int Conf on Machine Learning. Cambridge, MA: JMLR, 2018: 5353−5362
[164] London B, Sandler T. Bayesian counterfactual risk minimization[C] //Proc of the 36th Int Conf on Machine Learning. Cambridge, MA: JMLR, 2019: 4125−4133
[165] Faury L, Tanielian U, Dohmatob E, et al. Distributionally robust counterfactual risk minimization[C] //Proc of the 34th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2020: 3850−3857
[166] Schnabel T, Swaminathan A, Singh A, et al. Recommendations as treatments: Debiasing learning and evaluation[C] //Proc of the 33rd Int Conf on Machine Learning. Cambridge, MA: JMLR, 2016: 1670−1679
[167] Yang Longqi, Cui Yin, Xuan Yuan, et al. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback[C] //Proc of the 12th ACM Conf on Recommender Systems. New York: ACM, 2018: 279−287
[168] Bonner S, Vasile F. Causal embeddings for recommendation[C] //Proc of the 12th ACM Conf on Recommender Systems. New York: ACM, 2018: 104−112
[169] Narita Y, Yasui S, Yata K. Efficient counterfactual learning from bandit feedback[C] //Proc of the 33rd AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2019: 4634−4641
[170] Zou Hao, Cui Peng, Li Bo, et al. Counterfactual prediction for bundle treatment[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 19705−19715
[171] Xu Da, Ruan Chuanwei, Korpeoglu E, et al. Adversarial counterfactual learning and evaluation for recommender system[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 13515−13526
[172] Lopez R, Li Chenchen, Yan Xiang, et al. Cost-effective incentive allocation via structured counterfactual inference[C] //Proc of the 34th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2020: 4997−5004
[173] Joachims T, Swaminathan A, Schnabel T. Unbiased learning-to-rank with biased feedback[C] //Proc of the 10th ACM Int Conf on Web Search and Data Mining. New York: ACM, 2017: 781−789
[174] Wang Xuanhui, Golbandi N, Bendersky M, et al. Position bias estimation for unbiased learning to rank in personal search[C] //Proc of the 11th ACM Int Conf on Web Search and Data Mining. New York: ACM, 2018: 610−618
[175] Ai Qingyao, Bi Keping, Luo Cheng, et al. Unbiased learning to rank with unbiased propensity estimation[C] //Proc of the 41st Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2018: 385−394
[176] Agarwal A, Takatsu K, Zaitsev I, et al. A general framework for counterfactual learning-to-rank[C] //Proc of the 42nd Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2019: 5−14
[177] Jagerman R, de Rijke M. Accelerated convergence for counterfactual learning to rank[C] //Proc of the 43rd Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2020: 469−478
[178] Vardasbi A, de Rijke M, Markov I. Cascade model-based propensity estimation for counterfactual learning to rank[C] //Proc of the 43rd Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2020: 2089−2092
[179] Jagerman R, Oosterhuis H, de Rijke M. To model or to intervene: A comparison of counterfactual and online learning to rank from user interactions[C] //Proc of the 42nd Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2019: 15−24
[180] Bottou L, Peters J, Quiñonero-Candela J, et al. Counterfactual reasoning and learning systems: The example of computational advertising[J]. The Journal of Machine Learning Research, 2013, 14(1): 3207−3260
[181] Lawrence C, Riezler S. Improving a neural semantic parser by counterfactual learning from human bandit feedback[C] //Proc of the 56th Annual Meeting of the ACL, Vol 1. Stroudsburg, PA: ACL, 2018: 1820−1830
[182] Bareinboim E, Forney A, Pearl J. Bandits with unobserved confounders: A causal approach[C] //Proc of the 29th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2015: 1342−1350
[183] Lee S, Bareinboim E. Structural causal bandits: Where to intervene?[C] //Proc of the 32nd Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2018: 2568−2578
[184] Lee S, Bareinboim E. Structural causal bandits with non-manipulable variables[C] //Proc of the 33rd AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2019: 4164−4172
[185] Haan P, Jayaraman D, Levine S. Causal confusion in imitation learning[C] //Proc of the 33rd Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2019: 11698−11709
[186] Kyono T, Zhang Yao, van der Schaar M. CASTLE: Regularization via auxiliary causal graph discovery[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 1501−1512
[187] Yang Mengyue, Liu Frurui, Chen Zhitang, et al. CausalVAE: Disentangled representation learning via neural structural causal models[C] //Proc of the 34th IEEE/CVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2021: 9593−9602
[188] Zinkevich M, Johanson M, Bowling M, et al. Regret minimization in games with incomplete information[C] //Proc of the 20th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2007: 1729−1736
[189] Brown N, Lerer A, Gross S, et al. Deep counterfactual regret minimization[C] //Proc of the 36th Int Conf on Machine Learning. Cambridge, MA: JMLR, 2019: 793−802
[190] Farina G, Kroer C, Brown N, et al. Stable-predictive optimistic counterfactual regret minimization[C] //Proc of the 36th Int Conf on Machine Learning. Cambridge, MA: JMLR, 2019: 1853−1862
[191] Brown N, Sandholm T. Solving imperfect-information games via discounted regret minimization[C] //Proc of the 33rd AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2019: 1829−1836
[192] Li Hui, Hu Kailiang, Zhang Shaohua, et al. Double neural counterfactual regret minimization[C/OL] //Proc of the 8th Int Conf on Learning Representations. 2020 [2021-11-14]. https://openreview.net/pdf?id=ByedzkrKvH
[193] Oberst M, Sontag D. Counterfactual off-policy evaluation with Gumbel-max structural causal models[C] //Proc of the 36th Int Conf on Machine Learning. Cambridge, MA: JMLR, 2019: 4881−4890
[194] Buesing L, Weber T, Zwols Y, et al. Woulda, coulda, shoulda: Counterfactually-guided policy search[C/OL] //Proc of the 9th Int Conf on Learning Representations. 2019 [2021-11-14]. https://openreview.net/pdf?id=BJG0voC9YQ
[195] Chen Long, Zhang Hanwang, Xiao Jun, et al. Counterfactual critic multi-agent training for scene graph generation[C] //Proc of the 2019 IEEE/CVF Int Conf on Computer Vision. Piscataway, NJ: IEEE, 2019: 4613−4623 [196] Zhu Qingfu, Zhang Weinan, Liu Ting, et al. Counterfactual off-policy training for neural dialogue generation[C] //Proc of the 2020 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 3438−3448 [197] Choi S, Park H, Yeo J, et al. Less is more: Attention supervision with counterfactuals for text classification[C] //Proc of the 2020 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 6695−6704 [198] Zhang Zhu, Zhao Zhou, Lin Zhejie, et al. Counterfactual contrastive learning for weakly-supervised vision-language grounding[C] //Proc of the 34th Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2020: 655-666
[199] Kocaoglu M, Snyder C, Dimakis A G, et al. CausalGAN: Learning causal implicit generative models with adversarial training[C] //Proc of the 6th Int Conf on Learning Representations, 2018 [2021-11-03]. https://openreview.net/pdf?id=BJE-4xW0W
[200] Kim H, Shin S, Jang J H, et al. Counterfactual fairness with disentangled causal effect variational autoencoder[C] //Proc of the 35th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2021: 8128−8136
[201] Qin Lianhui, Bosselut A, Holtzman A, et al. Counterfactual story reasoning and generation[C] //Proc of the 2019 Conf on Empirical Methods in Natural Language Processing and the 9th Int Joint Conf on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA: ACL, 2019: 5046−5056 [202] Hao Changying, Pang Liang, Lan Yanyan, et al. Sketch and customize: A counterfactual story generator[C] //Proc of the 35th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2021: 12955−12962.
[203] Madaan N, Padhi I, Panwar N, et al. Generate your counterfactuals: Towards controlled counterfactual generation for text[C] //Proc of the 35th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2021: 13516−13524
[204] Peysakhovich A, Kroer C, Lerer A. Robust multi-agent counterfactual prediction[C] //Proc of the 33rd Int Conf on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc, 2019: 3083−3093
[205] Baradel F, Neverova N, Mille J, et al. CoPhy: Counterfactual learning of physical dynamics[C/OL] //Proc of the 8th Int Conf on Learning Representations. 2020 [2021-11-14]. https://openreview.net/pdf?id=SkeyppEFvS
-
期刊类型引用(4)
1. 邱淼波,高晋,林述波,李椋,王刚,胡卫明,王以政. 线性分解注意力的边缘端高效Transformer跟踪. 中国图象图形学报. 2025(02): 485-502 . 百度学术
2. 郭虎升,刘正琪,刘艳杰,王文剑. 时空特征强化与感知的视觉目标跟踪方法. 陕西师范大学学报(自然科学版). 2025(01): 60-70 . 百度学术
3. 张忠林. 基于蒙特卡罗算法的海上目标搜索研究. 中国新通信. 2024(16): 10-12 . 百度学术
4. 郭虎升. 目标检测综述:从传统方法到深度学习. 新兴科学和技术趋势. 2024(02): 128-145 . 百度学术
其他类型引用(0)