Task Offloading Strategy in Mobile Edge Computing Based on Cloud-Edge-End Cooperation
-
摘要:
在移动边缘计算(mobile edge computing,MEC)中,为了利用有限的计算资源提供高效的计算服务,提出一种基于Docker的云—边—端协同任务卸载框架,解决多接入MEC协同卸载、计算资源分配问题.为提高任务的执行速率和各节点资源利用率,对任务进行预处理,如在Kahn算法中加入行满秩矩阵要求并结合任务并行计算设定输出任务执行序列;分别建立端、边、云任务计算模型,分配权重设计联合优化系统延迟与能耗的目标函数;为求解最优卸载决策,引入“全优率”参数和粒子蜂设计人工粒子蜂群(artificial particle swarm, APS)算法作为卸载决策算法.实验表明,多任务处理证明了APS的有效性. 多接入条件下,相比于本地计算、边缘计算、云计算、端—边联合和随机处理5种模式,所提方案的低延时和低能耗表现证明了其提供高效服务的优越性.
Abstract:In order to make use of limited computing resources to provide efficient computing services, a cloud-edge-end collaborative task offloading framework based on Docker is proposed In MEC (mobile edge computing) to solve the problems of multi-access MEC collaborative offloading and computing resource allocation. In order to improve the execution rate of tasks and the resource utilization of each node, preprocessing of tasks: Kahn algorithm added to the requirements of full rank matrix sets the execution sequence of output tasks in combination with the parallel calculation of tasks. Based on these, the task computing mathematical models of end, edge and cloud are established respectively, and the objective functions of the joint optimization system delay and energy consumption are designed by assigning weights. In order to solve the optimal offloading decision, the parameter of "full merit rate" and particle bee are introduced to propose APS (artificial particle swarm) algorithm as offloading decision algorithm. The experiments show that multi-task processing proves the effectiveness of APS algorithm. Compared with the five modes of local computing, edge computing, cloud computing, end-edge union computing and random processing, the low latency and low energy consumption of the proposed scheme proves its advantages in providing efficient services under multi-access conditions.
-
国密SM4算法[1]是一种常用的分组密码算法,广泛应用于数据保护、加密通信等领域. SM4算法常见工作模式有ECB(electronic codebook),CBC(cipher block chaining)等,对于相同的明文块,ECB模式下会产生完全相同的密文,而在CBC模式下,当前的明文块会与前一块的密文异或后进行运算. 因此,即使是完全相同的明文输入也可能会有完全不同的密文输出. 相比于ECB模式,CBC模式提供了更高的安全性和抵抗攻击的能力,有着更高的应用需求. 提高SM4算法在CBC模式下的性能,对于在边缘设备中使用SM4算法是至关重要的. 但是,在CBC模式下存在着难以提高吞吐率的问题:每组的输入必须等待前一组运算结束后才能获得,因而难以使用流水线方法提升吞吐率.
文献[2]中提到了一种改进方法,将电路中的S盒以外的其他逻辑结构进行预计算,并把预计算的结果与S盒进行融合构成新的查找表,从而提高SM4算法在CBC模式下吞吐率. 本文基于此工作进一步优化了S盒的表示,并针对轮函数的迭代过程进行了优化,最终减少了轮函数关键路径上的2次异或运算,有效提高了算法的性能.
本文的设计针对CBC模式下的SM4算法,在TSMC 40 nm,SMIC 55 nm工艺下,使用Synopsys Design Compiler分别进行了ASIC综合. 综合结果显示,本文所提出的设计在CBC模式下的吞吐率达到了4.2 Gb/s,同时单位面积吞吐量达到了129.4 Gb·s−1·mm−2,明显优于已发表的类似设计. 这些结果表明本文所提出的化简方法在改进SM4算法性能方面具有很大的潜力.
本文的结构为:首先介绍了SM4算法及其在CBC模式下存在的性能瓶颈问题. 然后,详细描述了本文提出的2个化简方法,并解释了它们在轮函数迭代和S盒置换过程中的作用. 接下来,介绍了实验设计并给出了实验结果分析和对比. 最后,对进一步改进和应用的方向进行了展望.
1. SM4算法介绍
SM4算法是一种对称密钥密码算法,被广泛应用于数据加密和保护领域,它是中国密码算法的标准之一,具有较高的安全性和良好的性能.
SM4采用了分组密码的设计思想,将明文数据划分为128 b的数据块,并通过密钥对每个数据块进行加密和解密操作. 对单组数据进行加解密的流程如图1所示,分为密钥扩展算法和加解密算法2部分. 图1中的FK是系统预设的参数,与用户密钥进行异或运算后作为密钥扩展算法的输入. 加解密算法接受密钥扩展算法产生的32轮轮密钥rki对明文进行加解密,最后经反序变换输出. 加解密使用的是同一套计算流程,唯一的区别是解密时使用轮密钥的顺序与加密过程相反.
密钥扩展算法和加解密算法2部分均由32次轮函数迭代构成,整体结构均采用4路并行的Feistel结构,在计算过程中,以128 b数据为输入、128 b数据为输出,其内部的运算逻辑如图2所示. 输出中的前96 b数据等于输入中的后96 b数据,输出后的32 b数据通过轮函数运算产生.
在密钥扩展算法中使用的密钥是算法给定的固定密钥,记作cki. 在加解密算法中使用的密钥是由密钥扩展算法通过用户给的密钥扩展出来的轮密钥,记作rki.
1.1 SM4密钥扩展算法
SM4密钥扩展算法结构如图3所示,密钥扩展的主要过程包括32轮密钥扩展的轮函数,其中,密钥为128 b,FK为SM4标准中规定的一个128 b常数. 二者异或后的值将会作为密钥扩展轮函数的首轮输入,并通过一个选择器进行循环迭代,总计迭代32轮产生32个轮密钥.
设用户输入的密钥为MK,则该密钥对应的32轮轮密钥可以按照式(1)求出:
{(k0,k1,k2,k3)=MK⊕FK,ki+4=ki⊕F(ki+1⊕ki+2⊕ki+3⊕cki),rki=ki+4, (1) 其中,cki是系统预设的32 b参数,rki代表第i轮的轮密钥,F代表密钥扩展轮函数,其由S盒置换算法τ:Z322→Z322和线性变换算法L(x)=x⊕(x<<<13)⊕(x<<<23)组成,其中<<<表示循环左移运算.
1.2 SM4加解密算法
SM4算法的加解密算法的整体结构与密钥扩展算法类似,均包含32轮的轮函数迭代,区别在于加解密算法中额外包含1次反序变换.
SM4算法的轮函数迭代流程如图4所示,X1~X4为第1轮的输入,X2~X5为第1轮的输出,同时也是第2轮的输入. rk1为第1轮的轮密钥,T函数代表加解密模块的轮函数. 与密钥扩展部分的轮函数F类似,由S盒置换算法τ和一个线性变换算法L′(x)=x⊕(x<<<2)⊕(x<<<10) ⊕(x<<<18)⊕(x<<<24)组成.
2. 对SM4加解密算法关键路径的化简
通过多轮的迭代过程,SM4算法能够实现高强度的数据加密和解密. 然而,在CBC模式下,由于相邻数据之间的依赖关系,传统的流水线技术难以提高算法的吞吐率. 因此,针对这一问题,本文提出了2种化简方法,以减少关键路径上的运算,从而提高SM4算法在CBC模式下的性能.
2.1 轮函数优化
加解密模块的轮函数的结构如图4所示,若不考虑T函数带来的时序延迟,单次轮函数迭代的关键路径上共包含3次异或运算. 以公式的形式描述SM4算法加解密轮函数的迭代关系可得到式(2):
Xi+4=Xi⊕(Xi+1⊕Xi+2⊕Xi+3⊕rki). (2) 若考虑相邻的2次轮函数迭代,则有:
{Xi+4=Xi⊕T(Xi+1⊕Xi+2⊕Xi+3⊕rki),Xi+5=Xi⊕T(Xi+2⊕Xi+3⊕Xi+4⊕rki+1). (3) 观察式(1)~(3)不难发现,由于SM4采用了4条数据线路的Feistel结构进行设计,在相邻的2次轮函数迭代过程中,均有96 b的输入是完全一致的,在式(3)的计算过程中,相邻2轮的轮函数将Xi+2⊕Xi+3计算了2次.
因此,一个简单的优化思路便是,我们在轮函数之间传递数据时,额外传递Xi+2⊕Xi+3⊕rki+1的运算结果,并作用于下一次计算,得到的流程图如图5所示.
相比于图4的运算流程,在计算当前轮次的输出时,二次优化过后的轮函数通过提前获取下一轮次使用的密钥,并利用2轮之间相同的数据提前计算,可以使得在加解密的流程中总计节省32次异或运算的时间.
2.2 S盒性能优化
S盒是密码学领域的一个基本组件,其功能是实现数据的非线性变换,在DES,AES,SM1,SM4等算法中均有应用. 在SM4算法中,其提供了一个8 b到8 b的非线性变换.
在SM4算法中,S盒模块通常与另一个线性变换函数L′组合使用,即图4和图5中的T函数,其位于加解密算法轮函数的关键路径上,因此,如果能找到优化T函数关键路径的方法延时,也可以使得整个加解密模块的延时变小,进而提高运算效率.T函数的内部结构如图6所示,图中的<<<表示对32 b数据进行循环左移,关键路径包括1个S盒和3次异或运算. 在硬件实现中,循环移位可以通过硬件连线来实现,不会带来额外的路径延时.
T函数中包含4次异或运算,反映到电路设计中,其关键路径上至少存在3次异或运算. 因此,一个优化思路便是,将算法中的S盒的输入输出修改为8 b输入、32 b输出[2-3] ,并提前将L′函数作用于图中的4个S盒,如图7所示. 图7中,通过编码的形式保存其运行结果,将图6中的SBox与后续的线性变换L′组合形成exSBox,之后仅需要将4个exSBox的输出异或即可,从而减少了1次异或运算.
虽然修改后的S盒比原先的S盒输出了更多的数据,但在硬件实现中,仍然是通过相同数量的多路选择器查表输出. 因此修改前后的S盒的路径延时及其安全性并未改变.
2.3 S盒面积优化
以图7中的exSBox1为例,使用0xff作为输入展示exSBox1的构造方式,首先获得0xff作用于S盒后的运行结果0x48. 由于exSBox1的输入对应最高四位,因此,将其拓展为32 b数据为0x48000000. 在经过L′函数后,得到的值是0x68492121. 如表1所示,表中前5行加粗部分表示传入的数据及其循环移位后所处位置,其余位置在任意输入下都恒等于0.
表 1 搜索空间降低比率和命中率Table 1. Search Space Reduction Rate and Hit Rate原数据 01001000 00000000 00000000 00000000 <<<2 00100000 00000000 00000000 00000001 <<<10 00000000 00000000 00000001 00100000 <<<18 00000000 00000001 00100000 00000000 <<<24 00000000 01001000 00000000 00000000 异或和 01101000 01001001 00100001 00100001 注:加粗部分表示传入的数据及其循环移位后所处位置. 观察表1的运算结果不难发现,除最后一行加粗数字表示的第0~5位,第14,15位由异或运算产生,其余的24位均是输入的8位数据的排列组合,因此在硬件设计时,可以仅使用8 b输入、16 b输出的S盒实现. 对于图7中剩余的3个exSBox,在相同的输入下,可以通过对表1中的数据进行循环移位,得到对应的输出. 上述结论对4个位于不同部位的S盒均成立.
具体而言,令p为输入的8 b数据,τ(p)为标准SM4算法中S盒的输出. X=(x0,x1,⋯,x15)为exSBox1中存储的16 b数据,Y=(y0,y1,⋯,y31)为优化后的T函数中需要的32 b输出. τ为SM4算法标准中使用的S盒置换函数,其对于8 b输入,产生对应的8 b输出,则X可以由式(4)产生:
{(x0,x1,⋯,x7)=τ(p),(x8,x9,⋯,x15)=τ(p)⊕(τ(p)<<<2). (4) 由表1可知,Y的取值实际上可以由X经过排列组合得到,对于exSBox2,exSBox3,exSBox4的取值,可以通过Y循环移位得到,且由于该过程中仅包含赋值运算,在电路设计中可以通过物理连线完成. 相比于文献[2]中的设计,节约了1/3的面积消耗. 具体的计算方式如式(5)所示.
{(y0,y1,⋯,y5)=(x8,x9,⋯,x13),(y6,y7)=(x6,x7),(y8,y9,⋯,y13)=(x0,x1,⋯,x5),(y14,y15)=(x14,x15),(y16,y17,⋯,y21)=(x2,x3,⋯,x7),(y22,y23)=(x0,x1),(y24,y25,⋯,y29)=(x2,x3,⋯,x7),(y30,y31)=(x0,x1). (5) 3. 硬件实现与实验对比
现场可编程逻辑门阵列(FPGA)和专用集成电路(ASIC)是目前主流使用硬件电路实现密码算法的2个方式. FPGA虽然具有可编程性、灵活性和快速设计等优势,但ASIC相较于FPGA拥有更高的性能,与本文设计追求的高效率目标相符,所以选择在ASIC下实现.
3.1 硬件整体设计
SM4硬件系统的整体结构设计如图8所示,包括密钥扩展模块、加解密模块和适配CBC工作模式的组合逻辑. 对于单个加解密任务,若明文被分为n组,会执行1次密钥扩展和n次加解密. 因此,优化加解密算法的执行效率是优化SM4硬件设计的重点. 本文所提出的2种化简方法,对于每一组明文输入,可以减少64级异或门的延时,极大地提升了运算效率.
3.2 加解密模块设计
SM4算法的硬件实现主要有2种方案:一种方案是流水线结构,即通过寄存器连接多个加解密模块同时工作以提高加解密的效率,如图9(a)所示;另一种方案是使用循环迭代的方式. 即一次性提取32个轮函数中的n轮组合成一个组合电路,称为n合1电路,如图9(b)所示. 流水线结构的优势是可以充分利用n个加密核心的性能,在不影响整体工作频率的情况下加速运算. 对于SM4算法而言,在合理范围内堆叠流水线可以实现极高的吞吐量.
然而,流水线结构仅适用于ECB等数据无前后依赖的工作模式. 在CBC工作模式下,由于需要将前一轮的输出与本轮的输入进行异或运算,相邻的数据存在依赖,故而无法使用流水线加速运算. 因此,在本设计中没有选用流水线结构.
虽然循环迭代结构会降低整体模块的工作频率,对吞吐量的提升较为有限,但可以同时兼容 ECB,CBC这 2种工作模式. 本设计最终选择了循环迭代的设计方式.
3.3 密钥扩展模块设计
在SM4算法中,密钥扩展与加解密算法类似,均包含32轮迭代. 密钥扩展模块采用图2所示的单轮组合逻辑电路循环32次来实现32轮迭代.
在密钥扩展模块的输出端,使用寄存器存放每一轮电路的轮密钥,标号为0~31,如图10所示. 标号从0开始的好处是:在解密时,使用到的密钥顺序相反的,加密的第k轮使用的是第k−1号密钥,解密的第k轮使用的是第32−k号密钥. 在二进制下,二者的标号可以通过取反操作相互转化.
为了保证运算结果的准确性,密钥扩展模块还 会向加解密模块发出控制信号表明自己的工作状态,以避免在轮密钥尚未完全更新时使用错误的轮密钥进行加解密.
3.4 综合验证方案
在国家标准文档[1]中,并没有针对CBC工作模式给出具体的测试用例. 因此,本文设计方案通过完整的Verilog HDL语言实现,通过在FPGA平台进行综合、仿真和上板验证,以确保功能正确并进行相关性能分析,如图11所示. 具体而言,通过PCIE上位机下发随机的明文数据到FPGA开发板,开发板完成加密后传回上位机,通过与软件对比实现功能验证. 若在循环验证多次后二者的输出均完全相同,则认为设计的SM4电路的功能正确.
最终,本文的设计在Zynq 7020 FPGA开发板上完成了上板验证,确保了功能的正确性,工作频率最高可达95 MHz,吞吐量约为1.5 Gb/s.
3.5 ASIC综合结果
ASIC上主要针对2种工艺SMIC 55 nm与 TSMC 40 nm进行了测试、通过Synopsys公司的EDA工具DesignCompiler进行时序等综合约束,我们选择了芯片面积和芯片使用的逻辑门数量(gates)作为评估指标,其结果如表2和表3所示,在CBC模式下,本文的设计在3.97 mW的功耗下,单位面积吞吐率达129.4 Gb·s−1·mm−2,明显优于同类设计. 此外,以使用逻辑门的数量为评估标准,本文提出的设计在该指标上也明显优于同类设计,单位面积吞吐率为0.205×10−3 Gb·s−1·gates−1.
表 2 SM4综合结果与面积效率对比Table 2. Comparison of SM4 Synthesis Results and Area Efficiency表 3 SM4综合结果与门效率对比Table 3. Comparison of SM4 Synthesis Results and Gates Efficiency在不同工艺、电压下对该设计进行综合,可以得到本文设计在不同使用场景下的吞吐率. 在TSMC 40 nm、SMIC 55 nm、SMIC 130 nm下使用不同的工艺角分别对本文的设计进行综合,结果如表4所示.
表 4 不同工艺角下的SM4综合结果与效率对比Table 4. Comparison of SM4 Synthesis Results and Efficiency with Different Process Corners工艺节点 工艺角 面积/gates 吞吐率/(Gb·s−1) 功耗/mW 40 nm 0.99V/125°C/SS 21.0×103 2.40 2.55 1.1V/25°C/TT 21.2×103 4.34 3.97 1.21V/0°C/FF 20.9×103 6.96 8.35 55 nm 1V/25°C/TT 20.0×103 2.78 4.10 1.2V/25°C/TT 21.1×103 4.41 10.88 1.32V/0°C/FF 17.8×103 6.84 33.59 130 nm 1.08V/125°C/SS 20.8×103 1.11 6.86 1.2V/25°C/TT 21.0×103 1.75 15.70 1.32V/0°C/FF 21.8×103 2.45 23.03 4. 结 论
根据本文提出的2种对SM4加解密模块关键路径进行化简以及降低面积的方法,实现了4合1的SM4电路,并基于Zynq7020开发板进行了功能验证. 此外,ASIC综合结果表明本文的SM4电路相比于其他方案有更高的单位面积吞吐率和更低的功耗. 因此,这种对SM4算法进行的优化是有效的,并且对其他分组算法提高CBC模式下的单位面积吞吐率具有参考价值.
作者贡献声明:郝泽钰提出研究方案并完成了论文的撰写;代天傲、黄亦成、段岑林协助完成了ASIC平台上的验证实验;董进、吴世勇、张博、王雪岩、贾小涛提出指导意见并修改论文;杨建磊提出指导意见并讨论定稿.
-
表 1 ABC-PSO混合算法相关研究与本文方法对比
Table 1 Comparison of Researches on ABC-PSO Hybrid Algorithm and the Proposed Method
表 2 实验参数设定
Table 2 Experimental Parameters Setting
参数 取值 终端设备数量L 50 边缘节点数量M 4 信道带宽W/MHz 20 信道噪声功率τ2/W 2×10−13 链路之间干扰功率Iq /W 2×10−13 任务计算量wj /( cycle·s−1) [10,1000] 任务输入数据量dataj /MB [0.5,5] 任务所需最小计算能力fmin.j /GHz [2.0,20] 任务所需内存资源memj /MB [50,500] 任务所需CPU资源cpuj /GHz [1.0,3.0] 任务最大容忍时延tmax.j /s [0.5,1.5] 终端设备计算能力fl /GHz 4 终端设备发射功率Pl /W [0.1,0.5] 开关电容σ1/μF 0.01 边缘节点最大计算能力fi /GHz 50 边缘节点可用CPU资源cpui /GHz [3.0,30.0] 边缘节点可用内存资源memi / MB [1,40] 边缘节点与设备间传输速度Ri / Mbps [1,10] 边缘节点发射功率Pi /W 4 云中心最大计算能力fk /GHz 100 云中心与设备间传输速度Rk /Mbps [1,10] 云中心发射功率Pk /W 10 θ1和θ2初始值 0.5,0.5 表 3 实验内容设定
Table 3 Experimental Contents Setting
项目 实验内容 1 采用APS算法评估目标函数中时间占比和能耗的占比,并得出最优的θ1,θ2值. 2 从计算时间和能耗角度对比APS,ABC,PSO以及随机卸载算法(RAN)的表现,评估APS卸载决策算法的性能. 3 研究终端数量和边缘节点数量对协同卸载系统性能的影响. 4 研究任务的配置文件对系统性能的影响. 5 研究任务最大延迟和最小计算能力对系统性能的影响. 6 研究终端设备最大发射功率对系统性能的影响. -
[1] Casadei R, Fortino G, Pianini D, et al. Modelling and simulation of opportunistic IoT services with aggregate computing[J]. Future Generation Computer Systems, 2019, 91(2): 252−262
[2] Abolfazli S, Sanaei Z, Ahmed E, et al. Cloud-based augmentation for mobile devices: Motivation, taxonomies, and open challenges[J]. IEEE Communications Surveys Tutorials, 2014, 16(1): 337−368 doi: 10.1109/SURV.2013.070813.00285
[3] 崔勇,宋健,缪葱葱,等. 移动云计算研究进展与趋势[J]. 计算机学报,2017,40(2):273−295 Cui Yong, Song Jian, Liao Congcong, et al. Advances and trends in mobile cloud computing[J]. Chinese Journal of Computers, 2017, 40(2): 273−295 (in Chinese)
[4] Haung Y R. A QoE-aware strategy for supporting service continuity in an MCC environment[J]. Wireless Personal Communications, 2021, 116(1): 629−654 doi: 10.1007/s11277-020-07731-2
[5] 周悦芝,张迪. 近端云计算: 后云计算时代的机遇与挑战[J]. 计算机学报,2019,42(4):677−700 doi: 10.11897/SP.J.1016.2019.00677 Zhou Yuezhi, Zhang Di. Near-end cloud computing: Opportunities and challenges in post-cloud computing era[J]. Chinese Journal of Computers, 2019, 42(4): 677−700 (in Chinese) doi: 10.11897/SP.J.1016.2019.00677
[6] Mach P, Becvar Z. Mobile edge computing: A survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628−1656
[7] 张开元,桂小林,任德旺,等. 移动边缘网络中计算迁移与内容缓存研究综述[J]. 软件学报,2019,30(8):2491−2516 doi: 10.13328/j.cnki.jos.005861 Zhang Kaiyuan, Gui Xiaolin, Ren Dewang, et al. A review of computing migration and content caching in mobile edge networks[J]. Journal of Software, 2019, 30(8): 2491−2516 (in Chinese) doi: 10.13328/j.cnki.jos.005861
[8] Li Baogang, Si Fangqiang, Zhao Wei, et al. Wireless powered mobile edge computing with NOMA and user cooperation[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1957−1961 doi: 10.1109/TVT.2021.3051651
[9] 谢人超,廉晓飞,贾庆民,等. 移动边缘计算卸载技术综述[J]. 通信学报,2018,39(11):138−155 doi: 10.11959/j.issn.1000-436x.2018215 Xie Renchao, Lian Xiaofei, Jia Qingmin, et al. A review of moving edge computing offloading techniques[J]. Journal on Communications, 2018, 39(11): 138−155 (in Chinese) doi: 10.11959/j.issn.1000-436x.2018215
[10] Zhang Yue, Fu Jingqi. Energy efficient computation offloading strategy with tasks scheduling in edge computing[J]. Wireless Networks, 2021, 27(1): 609−620 doi: 10.1007/s11276-020-02474-1
[11] 刘伟,黄宇成,杜薇,等. 移动边缘计算中资源受限的串行任务卸载策略[J]. 软件学报,2020,31(6):309−328 Liu Wei, Huang Yucheng, Du Wei, et al. A resource-constrained serial task offloading strategy in mobile edge computing[J]. Journal of Software, 2020, 31(6): 309−328 (in Chinese)
[12] 张礼庆,郭栋,吴绍岭,等. 一种最大化内存共享与最小化运行时环境的超轻量级容器[J]. 计算机研究与发展,2019,56(7):1545−1555 doi: 10.7544/issn1000-1239.2019.20180511 Zhang Liqing, Guo Dong, Wu Shaoling, et al. An ultra-lightweight container with maximum memory sharing and minimum runtime environment[J]. Journal of Computer Research and Development, 2019, 56(7): 1545−1555 (in Chinese) doi: 10.7544/issn1000-1239.2019.20180511
[13] Tang Jie, Yu Rao, Liu Shaoshan, et al. A container based edge offloading framework for autonomous driving[J]. IEEE Access, 2020, 8(1): 33713−33726
[14] Li Shuangyuan. A task offloading optimization strategy in MEC based smart cities[J]. Internet Technology Letters, 2021, 4(1): e158 [15] 黄倩怡,李志洋,谢文涛,等. 智能家居中的边缘计算[J]. 计算机研究与发展,2020,57(9):1800−1809 Huang Qianyi, Li Zhiyang, Xie Wentao, et al. Edge computing in the smart home[J]. Journal of Computer Research and Development, 2020, 57(9): 1800−1809 (in Chinese)
[16] Xu Yu, Zhang Tiankui, Yang Dingcheng, et al. Joint resource and trajectory optimization for security in UAV assisted MEC systems[J]. IEEE Transactions on Communications, 2021, 69(1): 573−588 doi: 10.1109/TCOMM.2020.3025910
[17] 薛宁,霍如,曾诗钦,等. 基于DRL的MEC任务卸载与资源调度算法[J]. 北京邮电大学学报,2019,42(6):64−69 Xue Ning, Huo Ru, Zeng Shiqin, et al. MEC task unloading and resource scheduling algorithm based on DRL[J]. Journal of Beijing University of Posts and Telecommunications, 2019, 42(6): 64−69 (in Chinese)
[18] Bolettieri S, Bruno R, Mingozzi E. Application-aware resource allocation and data management for MEC assisted IoT service providers[J]. Journal of Network and Computer Applications, 2021, 181(2): 103020 [19] 薛建彬,丁雪乾,刘星星. 缓存辅助边缘计算的卸载决策与资源优化[J]. 北京邮电大学学报,2020,43(3):32−37 Xue Jianbin, Ding Xuegan, Liu Xingxing. Offload decision and resource optimization for caches aided edge computing[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(3): 32−37 (in Chinese)
[20] Liu Chubo, Tang Fang, Li Kenli, et al. Distributed task migration optimization in MEC by extending multi-agent deep reinforcement learning approach[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 32(7): 1603−1614
[21] Meng Yao, Dai Janxin. Energy efficient joint computation offloading and resource allocation in multi-user MEC systems[J]. Journal of Physics: Conference Series, 2020, 1693: 012042
[22] Miao Yiming, Wu Gaoxiang, Li Miao, et al. Intelligent task prediction and computation offloading based on mobile-edge cloud computing[J]. Future Generation Computer Systems, 2020, 102(9): 925−931
[23] Li Yang, Xu Gaochao, Ge Jiaqi, et al. Energy efficient resource allocation for application including dependent tasks in mobile edge computing[J]. KSII Transactions on Internet and Information Systems, 2020, 14(6): 2422−2443
[24] Chai Ming, Li Mingzhu, Yang Tiantian, et al. Dynamic priority based computation scheduling and offloading for interdependent tasks: Leveraging parallel transmission and execution[J]. IEEE Transactions on Vehicular Technology, 2020, 70(10): 10970−10985
[25] Liu Bowen, Xu Xiaolong, Qi Lianyong, et al. Task scheduling with precedence and placement constraints for resource utilization improvement in multi-user MEC environment[J]. Journal of Systems Architecture, 2021, 114(6): 101970
[26] Yan Jia, Bi Suzhi, Zhang Yingjun, et al. Optimal task offloading and resource allocation in mobile edge computing with inter-user task dependency[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 235−250 doi: 10.1109/TWC.2019.2943563
[27] Chen Long, Wu Jigang, Zhang Jun, et al. Dependency-aware computation offloading for mobile edge computing with edge-cloud cooperation[J]. IEEE Transactions on Cloud Computing, 2020, 11(10): 973−991
[28] Abbasi M, Mohammadi E, Khosravi M. Intelligent workload allocation in IoT-Fog-Cloud architecture towards mobile edge computing[J]. Computer Communications, 2021, 169(3): 71−80
[29] Li Wenzao, Wang Fangxin, Pan Yuwen, et al. Computing cost optimization for multi-BS in MEC by offloading[J]. Mobile Networks and Applications, 2020, 25(4): 1628−1641
[30] Zhu Zhengying, Qian Liping, Shen Jiafang, et al. Joint optimisation of UAV grouping and energy consumption in MEC enabled UAV communication networks[J]. IET Communications, 2020, 14(16): 2723−2730 doi: 10.1049/iet-com.2019.1179
[31] Xie Renchao, Li Zishu, Wu Jun, et al. Energy-efficient joint caching and transcoding for HTTP adaptive streaming in 5G networks with mobile edge computing[J]. China Communications, 2019, 16(7): 229−244 doi: 10.23919/JCC.2019.07.017
[32] Feng Siling, Chen Yinjie, Zhai Qianhao, et al. Optimizing computation offloading strategy in mobile edge computing based on swarm intelligence algorithms[J]. EURASIP Journal on Advances in Signal Processing, 2021, 2021(1): 1−15 doi: 10.1186/s13634-020-00710-6
[33] Liu Zhizhong, Sheng Quan, Xu Xufei, et al. Context-aware and adaptive QoS prediction for mobile edge computing services[J]. IEEE Transactions on Services Computing, 2019, 30(9): 125−139
[34] Liang Liang, Xiao Jintao, Ren Zhi, et al. Particle swarm based service migration scheme in the edge computing environment[J]. IEEE Access, 2020, 8: 45596−45606
[35] Ma Shuyue, Song Shudian, Zhao Jingmei, et al. Joint network selection and service placement based on particle swarm optimization for multi-access edge computing[J]. IEEE Access, 2020, 8: 160871−160881
[36] You Qian, Tang Bing. Efficient task offloading using particle swarm optimization algorithm in edge computing for industrial internet of things[J]. Journal of Cloud Computing, 2021, 10(1): 1−11 doi: 10.1186/s13677-020-00210-w
[37] Tamilselvan V. A hybrid PSO-ABC algorithm for optimal load shedding and improving voltage stability[J]. International Journal of Manufacturing Technology and Management, 2020, 34(6): 577−597 doi: 10.1504/IJMTM.2020.109999
[38] Gerardo S, Andrade M, Lara-Velázquez P, et al. ABC-PSO: An efficient bioinspired metaheuristic for parameter estimation in nonlinear regression[C] //Proc of the 16th Mexican Int Conf on Artificial Intelligence. Cham: Springer, 2016: 388−400
[39] Singh S, Chauhan P, Singh N. Capacity optimization of grid connected solarfuel cell energy system using hybrid ABC-PSO algorithm[J]. International Journal of Hydrogen Energy, 2020, 45(16): 10070−10088 doi: 10.1016/j.ijhydene.2020.02.018
[40] Han Zidong, Li Yufeng, Liang Junyu. Numerical improvement for the mechanical performance of bikes based on an intelligent PSO-ABC algorithm and WSN technology[J]. IEEE Access, 2018, 6: 32890−32898
[41] Zhou Ping, Shen Ke, Kumar N, et al. Communication efficient offloading for mobile edge computing in 5G heterogeneous networks[J]. IEEE Internet of Things Journal, 2020, 8(13): 10237−10247
-
期刊类型引用(2)
1. 祁磊,任子豪,刘俊汐,耿新. 虚实结合的行人重识别方法. 计算机研究与发展. 2025(02): 418-431 . 本站查看
2. 程思雨,陈莹. 伪标签细化引导的相机感知无监督行人重识别方法. 光电工程. 2023(12): 62-76 . 百度学术
其他类型引用(11)