• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于多源数据聚合的神经网络侧信道攻击

张润莲, 潘兆轩, 李金林, 武小年, 韦永壮

张润莲, 潘兆轩, 李金林, 武小年, 韦永壮. 基于多源数据聚合的神经网络侧信道攻击[J]. 计算机研究与发展, 2024, 61(1): 261-270. DOI: 10.7544/issn1000-1239.202220172
引用本文: 张润莲, 潘兆轩, 李金林, 武小年, 韦永壮. 基于多源数据聚合的神经网络侧信道攻击[J]. 计算机研究与发展, 2024, 61(1): 261-270. DOI: 10.7544/issn1000-1239.202220172
Zhang Runlian, Pan Zhaoxuan, Li Jinlin, Wu Xiaonian, Wei Yongzhuang. A Side Channel Attack Based on Multi-Source Data Aggregation Neural Network[J]. Journal of Computer Research and Development, 2024, 61(1): 261-270. DOI: 10.7544/issn1000-1239.202220172
Citation: Zhang Runlian, Pan Zhaoxuan, Li Jinlin, Wu Xiaonian, Wei Yongzhuang. A Side Channel Attack Based on Multi-Source Data Aggregation Neural Network[J]. Journal of Computer Research and Development, 2024, 61(1): 261-270. DOI: 10.7544/issn1000-1239.202220172

基于多源数据聚合的神经网络侧信道攻击

基金项目: 国家自然科学基金项目(62062026,61872103); 广西创新研究团队项目(2019GXNSFGA245004); 广西青年创新人才科研专项(桂科AD20238082); 广西自然科学基金项目(2020GXNSFBA297076); 广西研究生创新项目(2022YCXS082)
详细信息
    作者简介:

    张润莲: 1974年生. 博士,副教授. 主要研究方向为信息安全和分布式计算

    潘兆轩: 1997年生. 硕士研究生. 主要研究方向为侧信道分析

    李金林: 1997年生. 硕士研究生. 主要研究方向为网络安全及应用和侧信道分析

    武小年: 1972年生. 硕士,教授. 主要研究方向为信息安全和分布式计算

    韦永壮: 1976年生. 博士. 教授. 博士生导师. 主要研究方向为对称密码和协议安全分析

  • 中图分类号: TP309.7

A Side Channel Attack Based on Multi-Source Data Aggregation Neural Network

Funds: This work was supported by the National Natural Science Foundation of China (62062026, 61872103), the Innovation Research Team Project of Guangxi (2019GXNSFGA245004), the Scientific Research Project of Young Innovative Talents of Guangxi (guike AD20238082), the Guangxi Natural Science Foundation (2020GXNSFBA297076), and the Graduate Innovation Project of Guangxi (2022YCXS082).
More Information
    Author Bio:

    Zhang Runlian: born in 1974. PhD, associate professor. Her main research interests include information security and distributed computing

    Pan Zhaoxuan: born in 1997. Master candidate. His main research interest includes side channel analysis

    Li Jinlin: born in 1997. Master candidate. His main research interests include network security and application, and side channel analysis

    Wu Xiaonian: born in 1972. Master, professor. His main research interests include information security and distributed computing

    Wei Yongzhuang: born in 1976. PhD, professors, PhD supervisor. His main research interests include symmetric ciphers and security analysis of protocol

  • 摘要:

    基于深度学习的侧信道攻击需要针对密码算法的每一个密钥字节建模并训练,数据采集和模型训练开销大. 针对该问题,提出一种基于多源数据聚合的神经网络侧信道攻击方法. 为筛选具有良好泛化效果的密钥字节泄露数据进行数据聚合,以AES-128算法为例,先基于16个密钥字节的泄露数据训练16个单密钥字节模型,分别实现对16个密钥字节的恢复;其次,设计一种打分机制评估各单密钥字节模型的泛化效果,通过得分排序筛选出对各密钥字节恢复效果最好的单密钥字节模型;最后,以筛选模型所对应的各密钥字节泄露数据集构建多源数据聚合模型进行训练,实现密钥恢复. 实验测试结果表明,多源数据聚合模型具有良好的泛化效果,有效提高了密钥恢复的准确率和效率,降低了恢复密钥所需的能量迹数量,其在采集能量迹较少的情况下依然具有较好的攻击效果.

    Abstract:

    Side channel attack based on deep learning needs to model and train each key byte of the cryptographic algorithm, which costs a lot of data acquisition and model training. To solve this problem, a side channel attack method based on multi-source data aggregation neural network is proposed. In order to screen the leaked data of key byte with good generalization quality for data aggregation, taking AES-128 algorithm as an example, firstly 16 single key byte models are trained based on the leaked data of 16 key bytes, and models are used to recover 16 key bytes respectively. Secondly, a scoring mechanism is designed to evaluate the generalization effect of each single key byte model, and models with the best recovery effect for each key byte are selected according to score sorting. Finally, a multi-source data aggregation model is constructed based on the key byte leaked data sets corresponding to the selected models to realize key recovery. The tested results show that the multi-source data aggregation model has good generalization effect, effectively improves the accuracy and efficiency of key recovery, reduces the number of traces used to recover the key, and the model also has good attack effect in the case of less traces.

  • 终端网络是互联网的重要组成部分,它连接骨干网络和终端网络,对用户体验的影响最为直接. 随着5G/6G、物联网等技术的发展,终端网络的性能需求不断提升,承载着诸如智慧城市和工业互联网等新兴应用,是推动社会数字化转型的重要基础设施,是未来网络演进不可忽视的重要研究对象. 清华大学李振华教授团队通过分析终端网络中存在的用户困惑和技术鸿沟问题,从“可用性、可靠性、可信性”三个关键维度进行研究,提出云原生强化设计的理念,实现终端网络大规模的测量分析与设计优化,并在多个工业系统中取得了良好的应用效果. 文章突出从用户视角出发的设计思想,对提升网络终端的可用性、可靠性与安全性做出了系统性的探索,主要包括以下三个核心点:

    1)针对终端网络带给用户的主要困惑,从网速、断连、安全和代际角度全面分析,阐述克服经典设计模式潜在缺陷的研究动力,通过剖析大规模工业终端网络在多样化使用场景下的性能落差问题,总结动机、场景、资源和知识方面的研发鸿沟,为克服现存技术挑战指明解决方向.

    2)围绕云原生强化设计的创新模式,综合考量技术和非技术多方面因素,利用服务器无感知基础设施、以微服务形态测量分析大规模终端网络,并针对复杂场景下的异构性能缺陷,跨层跨代协同强化,自适应改进终端网络设计. 最终实现终端网络的整体完善和全面进化,让终端网络服务更加高效、安全和可靠. 这些方法对现实中的网络运营与演进具有重要借鉴意义.

    3)实践效果上,该研究团队将理论设计与工业应用相结合,在不同规模和需求的多个工业系统(包括政府运营的专网、大型企业的商业系统以及创业公司的网络应用)中做了调研分析、部署实施和落地改造,有效并高效地解决了其关键问题,提升了服务质量,示范性地推动了大规模复杂终端网络的技术革新.

    总体而言,该研究工作系统而全面地分析了终端网络面临的问题,并在理论和实践上进行了有益的探索,形成了一套改善网络性能的方法体系. 这对推动基于云原生的网络技术发展具有较大的参考价值. 后续工作可以在技术普适性和用户感知等方面进行拓展,以建立一个更智能、自主的网络系统,这将对万物互联时代数字社会的进步具有重要意义.

    罗军舟,教授,博士生导师.主要研究方向为计算机网络.

    李振华, 王泓懿, 李洋, 林灏, 杨昕磊. 大规模复杂终端网络的云原生强化设计[J]. 计算机研究与发展,2024,61(1):2−19. DOI: 10.7544/issn1000-1239.202330726

  • 图  1   MLP结构

    Figure  1.   The structure of MLP

    图  2   不同模型恢复各密钥字节的能量迹数

    Figure  2.   Number of traces for each key byte recovered by different models

    表  1   16个模型恢复对应密钥字节的最少能量迹数

    Table  1   Minimum Number of Traces for Sixteen Models Recovering the Corresponding Key Byte

    模型能量迹数模型能量迹数模型能量迹数模型能量迹数
    M150M531M918M1328
    M240M615M1050M1433
    M349M727M1168M1541
    M430M839M1235M1633
    下载: 导出CSV

    表  2   16 个模型恢复16 个密钥字节的能量迹数

    Table  2   Number of Traces for Sixteen Models Recovering Sixteen Key Bytes

    模型密钥字节
    S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16
    M1501387895138141681378142071384121287177172
    M211340137831607167170256192171329466208352155
    M396182493003321838744227529971870738482149374
    M411397245306168711091251151831425828718180
    M557129409492116551191635181501117041535549
    M61252489701821539284402191148162215416497367
    M7667263128157872733214635939675134314104328
    M811210816510012712514839404566744268117125
    M981306174173931921084918686610327122120195
    M103081252741682191022117648501079210747249161
    M1119427318321538915114813010315768404145152108711
    M1255027454090135575333793949140355474265181
    M131471785011771051461314146725692285870150
    M142111835081472051161971167246891756333184162
    M1586123561681881234986150120423566627441417
    M16991453295452191118103821422521019242137833
    下载: 导出CSV

    表  3   各个模型的得分

    Table  3   Scores of Each Model

    模型得分模型得分模型得分模型得分
    M113.2M517.7M921.9M1322.5
    M213.5M615.9M1015.9M1412.9
    M37.2M718.6M116.0M1519.2
    M419.5M828.5M1216.8M1614.7
    下载: 导出CSV

    表  4   由得分得到的各个模型的排序

    Table  4   Ranking of Each Model According to Scores

    排名模型排名模型排名模型排名模型
    1M85M159M1013M1
    2M136M710M614M14
    3M97M511M1615M3
    4M48M1212M216M11
    下载: 导出CSV

    表  5   6 个模型对16个密钥字节的恢复结果

    Table  5   Recovery Results of Six Models for 16 Key Bytes

    模型密钥字节
    S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16
    文献[13]550550550550550550550550550550550550550550550550
    Mi11561410913103210222000700116519871844140146856756315322000
    Mix_84155116366673381728110662129882779150
    MO_84273417712065401909310993172137108100155
    Mix_1027397132374125115606865124841179133
    MO_10423733566734531608411072116204110125136
    下载: 导出CSV

    表  6   7个模型对16个密钥字节的恢复结果

    Table  6   Recovery Results of Seven Models for 16 Key Bytes

    模型密钥字节数据
    S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16
    文献[9] 4
    Mix_8 32 16 45 4 4 40 5 4 5 16 9 5 5 37 7 9
    MO_8 4 5 5 4 5 6 4 6 9 23 15 29 17 47 34 12
    Mix_10 30 6 35 4 5 4 6 4 4 7 10 6 5 28 8 8
    MO_10 4 4 5 5 5 4 5 7 6 9 15 18 11 28 34 11
    Mix_12 13 6 21 4 5 4 5 4 4 6 9 5 6 20 6 6
    MO_12 3 4 5 4 5 4 5 6 7 7 10 6 7 22 25 11
    下载: 导出CSV

    表  7   5个模型对16个密钥字节的恢复结果

    Table  7   Recovery Results of Five Models for 16 Key Bytes

    模型密钥字节
    S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16
    Mi 95 44 40
    Mix_8 5 7 6 4 5 4 5 5 4 6 6 5 6 8 6 15
    MO_8 4 6 4 4 4 5 6 7 7 6 8 7 8 8 8 20
    Mix_10 5 6 7 5 4 4 4 5 4 4 8 6 7 6 8 12
    MO_10 4 5 4 4 4 4 7 7 7 8 13 9 7 11 9 16
    下载: 导出CSV

    表  8   针对Present算法16 个模型恢复16 个密钥字节的能量迹数

    Table  8   Number of Traces for Sixteen Models Recovering Sixteen Key Nibbles for Present Algorithms

    模型密钥字节
    S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16
    M1 4 169 357
    M2 6 317 394 319 181 55 73 82 83 167
    M3 55 25 217
    M4 5 14 78 489 130
    M5 19 438 379
    M6 337 15 11 159 79 184 341 240 421
    M7 270 236 4 75 257 97 352
    M8 169 8 473 108 478 230
    M9 5
    M10 72 114 54 442 198 9 35 139 65 463
    M11 340 6 150
    M12 35 143 86 398 31 5 51 51 186
    M13 119 332 73 5
    M14 19 145 165 166 45 402 6 189 163
    M15 130 403 176 209 118 172 219 11
    M16 480 477 220 390 229 235 5
    下载: 导出CSV

    表  9   16 个模型的得分

    Table  9   Scores of Sixteen Models

    模型得分模型得分模型得分模型得分
    M18.1M57.8M93M1310.5
    M221M615.6M1020.7M1419.8
    M38.1M711.7M118.1M1513.5
    M410.2M89.6M1221.6M169.3
    下载: 导出CSV

    表  10   不同模型对各密钥半字节的恢复结果

    Table  10   Recovery Results of Different Models for Each Key Nibble

    模型密钥字节数据
    S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16
    Mi 4 6 25 5 19 11 4 8 5 9 6 5 5 6 11 5
    Mix_8 272 3 171 11 3 2 8 2 54 3 2 2 3 129
    Mix_10 250 2 397 4 3 3 3 2 104 1 4 2 5 254
    Mix_12 2 2 13 2 474 1 2 4 3 38 2 2 6 2 3
    Mix_16 4 3 5 5 4 3 2 4 4 5 4 3 4 3 3 6
    下载: 导出CSV
  • [1] 王安,葛婧,商宁,等. 侧信道分析实用案例概述[J]. 密码学报,2018,5(4):383−398 doi: 10.13868/j.cnki.jcr.000249

    Wang An, Ge Jing, Shang Ning, et al. Practical cases of side-channel analysis[J]. Journal of Cryptologic Research, 2018, 5(4): 383−398 (in Chinese) doi: 10.13868/j.cnki.jcr.000249

    [2]

    Zhang Libang, Xing Xinpeng, Fan Junfeng, et al. Multi-label deep learning based side channel attack[C/OL] //Proc of the 2019 Asian Hardware Oriented Security and Trust Symp. Piscataway, NJ: IEEE, 2019[2022-01-10]. https://ieeexplore.ieee.org/document/9006657

    [3]

    Ghandali S, Ghandali S, Tehranipoor S. Profiled power-analysis attacks by an efficient architectural extension of a CNN implementation[C] //Proc of the 22nd Int Symp on Quality Electronic Design. Piscataway, NJ: IEEE, 2021: 395−400

    [4]

    Kim J, Picek S, Heuser A, et al. Make some noise: Unleashing the power of convolutional neural networks for profiled side-channel analysis[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019, 2019(3): 148−179

    [5]

    Maghrebi H, Portigliatti T, Prouff E. Breaking cryptographic implementations using deep learning techniques[C] //Proc of the 5th Int Conf on Security, Privacy, and Applied Cryptography Engineering. Berlin: Springer, 2016: 3−26

    [6]

    Cagli E, Dumas C, Prouff E. Convolutional neural networks with data augmentation against jitter-based countermeasures[C] //Proc of the 19th Int Conf on Cryptographic Hardware and Embedded Systems. Berlin: Springer, 2017: 45−68

    [7]

    Benadjila, R, Prouff, E, Strullu, R. et al. Deep learning for side-channel analysis and introduction to ASCAD database[J]. Journal of Cryptographic Engineering, 2020, 10(2): 163−188 doi: 10.1007/s13389-019-00220-8

    [8]

    Wang Huanyu, Dubrova E. Federated learning in side-channel analysis [C] //Proc of the 16th Int Conf on Information Security and Cryptology. Berlin: Springer, 2020: 257−272

    [9]

    Perin G, Chmielewski L, Picek S. Strength in numbers: Improving generalization with ensembles in machine learning-based profiled side-channel analysis[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020, 2020(4): 337−364

    [10]

    Won Y S, Han D G, Jap D, et al. Non-profiled side-channel attack based on deep learning using picture trace[J]. IEEE Access, 2021, 9: 22480−22492 doi: 10.1109/ACCESS.2021.3055833

    [11]

    Zaid G, Bossuet L, François D, et al. Ranking loss: Maximizing the success rate in deep learning side-channel analysis[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020, 2021(1): 25−55

    [12] 王恺,严迎建,郭朋飞,等. 基于改进残差网络和数据增强技术的能量分析攻击研究[J]. 密码学报,2020,7(4):551−564 doi: 10.13868/j.cnki.jcr.000389

    Wang Kai, Yan Yingjian, Guo Pengfei, et al. Research on power analysis attack based on improved residual network and data augmentation technology[J]. Journal of Cryptologic Research, 2020, 7(4): 551−564 (in Chinese) doi: 10.13868/j.cnki.jcr.000389

    [13]

    Wang Ping, Chen Ping, Luo Zhimin, et al. Enhancing the performance of practical profiling side-channel attacks using conditional generative adversarial networks[EB/OL]. 2020[2022-01-10]. https://eprint.iacr.org/2020/867

    [14]

    Luo Zhimin, Zheng Mengce, Wang Ping, et al. Towards strengthening deep learning-based side channel attacks with mixup[EB/OL]. 2021[2022-01-10]. https://eprint.iacr.org/2021/312

    [15]

    Abdellatif K M. Mixup data augmentation for deep learning side-channel attacks[EB/OL]. 2021[2022-01-10]. https://eprint.iacr.org/2021/328

    [16]

    Zhang Hongyi, Cisse M, Dauphin Y N, et al. Mixup: Beyond empirical risk minimization[C/OL] //Proc of the 6th Int Conf on Learning Representations. Amherst, MA: OpenReview. net, 2018 [2022-01-10]. https://openreview.net/pdf?id=r1Ddp1-Rb

    [17]

    Nassar M, Souissi Y, Guilley S, et al. RSM: A small and fast countermeasure for AES, secure against 1st and 2nd-order zero-offset SCAs[C] //Proc of the 15th Design, Automation and Test in Europe Conf and Exhibition. Piscataway, NJ: IEEE, 2012: 1173−1178

    [18]

    Gilmore R, Hanley N, O’Neill M. Neural network based attack on a masked implementation of AES[C] //Proc of the 2015 IEEE Int Symp on Hardware Oriented Security and Trust. Piscataway, NJ: IEEE, 2015: 106−111

  • 期刊类型引用(1)

    1. 王星宇. 浅析新时代背景下计算机科学技术发展的新方向. 数字通信世界. 2024(03): 164-166 . 百度学术

    其他类型引用(0)

图(2)  /  表(10)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  79
  • PDF下载量:  109
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-02-28
  • 修回日期:  2022-12-22
  • 网络出版日期:  2023-04-17
  • 刊出日期:  2023-12-27

目录

/

返回文章
返回