Processing math: 3%
  • 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

前向安全的高效属性基可净化签名方案

朱留富, 李继国, 陆阳, 张亦辰

朱留富, 李继国, 陆阳, 张亦辰. 前向安全的高效属性基可净化签名方案[J]. 计算机研究与发展, 2023, 60(12): 2737-2748. DOI: 10.7544/issn1000-1239.202220212
引用本文: 朱留富, 李继国, 陆阳, 张亦辰. 前向安全的高效属性基可净化签名方案[J]. 计算机研究与发展, 2023, 60(12): 2737-2748. DOI: 10.7544/issn1000-1239.202220212
Zhu Liufu, Li Jiguo, Lu Yang, Zhang Yichen. Efficient and Forward-Secure Attribute-Based Sanitizable Signature Scheme[J]. Journal of Computer Research and Development, 2023, 60(12): 2737-2748. DOI: 10.7544/issn1000-1239.202220212
Citation: Zhu Liufu, Li Jiguo, Lu Yang, Zhang Yichen. Efficient and Forward-Secure Attribute-Based Sanitizable Signature Scheme[J]. Journal of Computer Research and Development, 2023, 60(12): 2737-2748. DOI: 10.7544/issn1000-1239.202220212
朱留富, 李继国, 陆阳, 张亦辰. 前向安全的高效属性基可净化签名方案[J]. 计算机研究与发展, 2023, 60(12): 2737-2748. CSTR: 32373.14.issn1000-1239.202220212
引用本文: 朱留富, 李继国, 陆阳, 张亦辰. 前向安全的高效属性基可净化签名方案[J]. 计算机研究与发展, 2023, 60(12): 2737-2748. CSTR: 32373.14.issn1000-1239.202220212
Zhu Liufu, Li Jiguo, Lu Yang, Zhang Yichen. Efficient and Forward-Secure Attribute-Based Sanitizable Signature Scheme[J]. Journal of Computer Research and Development, 2023, 60(12): 2737-2748. CSTR: 32373.14.issn1000-1239.202220212
Citation: Zhu Liufu, Li Jiguo, Lu Yang, Zhang Yichen. Efficient and Forward-Secure Attribute-Based Sanitizable Signature Scheme[J]. Journal of Computer Research and Development, 2023, 60(12): 2737-2748. CSTR: 32373.14.issn1000-1239.202220212

前向安全的高效属性基可净化签名方案

基金项目: 国家自然科学基金项目(62072104,61972095,U21A20465,U1736112,61972190);福建省自然科学基金项目(2020J01159)
详细信息
    作者简介:

    朱留富: 1995年生. 硕士研究生. 主要研究方向为公钥密码学

    李继国: 1970年生. 博士,教授. CCF会员. 主要研究方向为公钥密码学、云计算安全

    陆阳: 1977年生. 博士,教授. 主要研究方向为信息安全与密码学、云计算安全

    张亦辰: 1971年生. 博士,副教授. 主要研究方向为公钥密码学、云计算安全

    通讯作者:

    李继国(ljg1688@163.com

  • 中图分类号: TP391

Efficient and Forward-Secure Attribute-Based Sanitizable Signature Scheme

Funds: This work was supported by the National Natural Science Foundation of China (62072104, 61972095, U21A20465, U1736112, 61972190) and the Natural Science Foundation of Fujian Province (2020J01159).
More Information
    Author Bio:

    Zhu Liufu: born in 1995. Master candidate. His main research interest includes public key cryptography

    Li Jiguo: born in 1970. PhD, professor. Member of CCF. His main research interests include public key cryptography and cloud computing security

    Lu Yang: born in 1977. PhD, professor. His main research interests include information security and cryptography, and cloud computing security

    Zhang Yichen: born in 1971. PhD, associate professor. Her main research interests include public key cryptography and cloud computing security

  • 摘要:

    在属性基签名(attribute-based signature, ABS)方案中,签名者密钥由不同的属性生成,只有当所拥有的属性满足给定的签名策略时才能够产生有效签名.验证者不需要知道签名者真实身份就能判断签名是否有效.所以ABS因其匿名性而受到广泛关注.在ABS方案中,一旦密钥发生泄露,那么获得密钥的攻击者就可以生成一个有效签名.原始消息中往往包含一些敏感信息,例如在电子医疗或电子金融场景中,个人的医疗记录或交易记录中包含个人隐私信息,若未经脱敏处理将会导致个人敏感信息泄露.为了解决密钥泄露和敏感信息泄露问题,提出了一种前向安全的高效属性基可净化签名(forward-secure attribute-based sanitizable signature, FABSS)方案.基于η-DHE(η-Diffie-Hellman exponent)困难问题假设,在标准模型下证明了该方案的安全性.提出的方案不仅可以抵抗密钥泄露,保护签名者隐私,同时还具有敏感信息隐藏功能.此外,提出的方案具有固定签名长度,并且在验证阶段只需要计算常数个配对运算.实验分析表明提出方案的性能是高效的.

    Abstract:

    In the attribute-based signature (ABS) scheme, the secret key of the signer is generated by attribute authority with different attributes, and the signature can be generated successfully only when the attributes meet the given signing policy. The verifier does not need to know the identity of the signer to determine whether the signature is valid. As a result, ABS has attracted wide attention due to its anonymity and fine-grained access control. In ABS scheme, once the key leakage occurs, the attacker can use the leaked key to generate a valid signature. The original message often contains some sensitive information. For example, in e-health or electronic finance scenario, personal privacy information is contained in personal medical records or transaction records. If the original message is not desensitized, sensitive personal information will be leaked. In order to solve the problems of key leakage and sensitive information leakage, an efficient and forward-secure attribute-based sanitizable signature (FABSS) scheme is proposed. The security of FABSS is reduced to the η-DHE (η-Diffie-Hellman exponent) assumption problem under the standard model. The proposed scheme not only protects signer privacy and supports fine-grained access control, but also has the ability to hide sensitive information and resist key leakage. In addition, the length of signature is constant, and only a constant number of pairing operations need to be calculated in the verification stage. Experimental analysis shows that the performance of the proposed scheme is efficient.

  • 点对学习(pairwise learning)在数据挖掘和机器学习中占有很重要的地位. 在数据挖掘方面,主要的应用场景有运营式传统行业、互联网领域、物联网领域等[1];在机器学习方面,包括排序[2-5]、接收机操作特性曲线的面积计算[6]、度量学习[7]等.

    关于在线点对学习泛化性的研究,Wang等人[8]建立的损失函数是一致有界条件下的泛化分析,给出遗憾界O(T1). Ying等人[9-10]基于非正则的再生核希尔伯特空间(reproducing kernel Hilbert space, RKHS)的在线点对学习算法,在损失函数没有强凸性和有界性的假设条件下,得到遗憾界O(T1/3logT). Chen等人[11]假设迭代序列满足更紧的一致约束,给出遗憾界O(T1/2),同时提高了算法最后一次迭代的收敛率. Guo等人[12]基于正则的RKHS,对于特定的铰链损失函数有O(T1/4logT1/2)收敛率. Wang等人[13]分析了具有多项式衰减步长和多个正则化参数的在线点对学习算法最后一次迭代的收敛性,给出遗憾界O(T2/3). 文献[14]提出了基于分而治之策略的多正则化项的分布式在线点对学习的误差分析.

    作为用来分析泛化性的重要工具之一,稳定性分析已经被广泛应用于单点学习算法的泛化边界研究[15-16]. 但是,除了Shen等人[17]和Lei等人[18]的工作以外,关于点对学习的稳定性研究较少. Shen等人[17]建立了随机梯度下降(stochastic gradient descent, SGD)在凸和强凸损失函数中的稳定性结果,从而给出了泛化边界,并权衡了SGD下的泛化误差和优化误差,Lei等人[18]提供了一个更细化的稳定性分析,并将泛化边界改进为O(γlogn).

    以上所述都是假设损失函数是强凸或一般凸,缺乏对非凸损失函数的在线点对学习的理论分析. 针对这一问题,本文基于稳定性分析,提出了非凸损失函数的在线点对学习的遗憾界. 本文包含2点贡献:1)提出了可以扩展到非凸损失函数的广义在线点对学习框架;2)建立了该框架下稳定性和遗憾界之间的关系,并给出了该框架的遗憾界及理论分析.

    传统的机器学习与在线学习模式不同,传统的机器学习中,一次性地取全部训练样本进行学习,样本分为训练样本和测试样本. 而在线学习没有训练样本和测试样本的区分,学习者(learner)实时获取样本,每获取到1个实例,就调整1次假设.

    假设一个样本空间Z=X×Y,其中XRd是一个输入空间,YR是一个输出空间,{{\boldsymbol{x}}} \in Xy \in Y分别是输入和输出. 在线点对学习的学习过程迭代T轮,学习者每轮接收2个实例({{\boldsymbol{x}}_t},{y_t}),({\boldsymbol{x}}_t^\prime ,y_t^\prime ),并进行预测,然后接收标签,再依损失函数 {\ell _t} \in L 遭受的损失更新假设{{\boldsymbol{w}}_{t + 1}} \in W.

    广义在线点对学习表示为

    {{\boldsymbol{w}}_t} \in {{\rm{arg\;min}}} \left\{ {\sum\limits_{i = 1}^{t - 1} {{\ell _i}} ({{\boldsymbol{w}}},{z},{{z}^\prime }) + {{{\boldsymbol{\sigma}} }^{\text{T}}}{{\boldsymbol{w}}}:{{\boldsymbol{w}}} \in W} \right\}.

    显而易见,与在线点对学习模型相比,广义在线点对学习是一个更鲁棒、更广义的框架. 该框架中包含一个{{\boldsymbol{\sigma }}}项,{{\boldsymbol{\sigma }}} 项是一个从{\text{exp}}(\eta )(参数为\eta 的指数分布)采样的随机噪声. 引入随机噪声项{{\boldsymbol{\sigma }}}避免过拟合,从而提高在线点对学习的泛化能力. 因此,广义在线点对学习是鲁棒的在线点对学习,是一个更广义的在线框架. FTRL(follow the regularized leader)是一种广泛用于凸假设的非常有效的算法[19]. 事实上,当广义在线点对学习中的随机噪声为\mu {{\boldsymbol{w}}}时,FTRL即为广义在线点对学习的一个特例:

    \begin{gathered} {{\boldsymbol{w}}_t} \in {{\rm{arg\;min}}} \left\{ {\sum\limits_{i = 1}^{t - 1} {{\ell _i}} ({\boldsymbol{w}},{z},{{z}^\prime }) + \mu {{\left\| {\boldsymbol{w}}\right\|}^2}} \right\}, \\ \mu \approx {T^\rho },\rho \in (0,1). \\ \end{gathered}

    直觉上,度量在线学习质量的方式是学习者遭受的损失函数的累计加和,学习者的目标是使累计损失尽可能的小,这也是一般学习模式性能度量的方式. 但是,在线学习中的数据通常是对抗性生成的,对手知道学习者的所有信息,包括学习者给出的预测函数和损失函数等. 因此,对手总是会给出与学习者预测值相反的标签,使得学习者的预测总是错误的,并遭受最大的损失. 在这种对抗环境中,累计损失的度量方式难以奏效,为了解决这个问题,引入了专家(expert)这一概念. 专家就是一个映射集合 h:X \to Y ,对输入{\boldsymbol{x}} \in X给出预测h({\boldsymbol{x}}),与学习者不同的是,专家是固定的,学习者会随着时间根据损失进行更新,而专家给出的预测不会受到对手影响. 采用专家的损失作为参考,矫正学习者的预测,学习者在专家中选择的时候,只需要选择对输入实例的累计损失函数值最小的专家,即最优专家. 有了专家的参与,在线学习性能度量方式就是学习者遭受的损失与最优专家的损失之差的累计加和,以此避免对手的干扰.

    有专家建议的在线点对学习是学习者和对手之间的重复游戏,其特征是学习者可以从含有N个专家的有限集合H中进行选择,对手从一组决策集合Y中选择,还有一个损失函数{\ell _t} \in L. 首先,在游戏开始前,对手从Y中选择一个任意的决策序列{y_1},{y_2}, …,在游戏的每一轮t = 1,2, …,学习者必须选择(可能是随机的)一个专家 {h_t} \in H ,然后对手揭示其决策{y_t} \in Y,学习者遭受损失. 学习者每接收到一对实例{z},{{z}^\prime } \in Z后的目标是使学习者遭受的损失与最优假设{{\boldsymbol{w}}^*} \in W的损失之间的累积差尽可能的小,因此,遗憾界是衡量在线点对学习性能的标准,对于算法\mathcal{A}定义为

    {\mathcal{R}}_{\mathcal{A}}(T)={\displaystyle \sum _{t=1}^{T}\left[{\ell }_{t}\left({{\boldsymbol{w}}}_{t},{z},{{z}}^{\prime }\right)-{\ell }_{t}\left({{\boldsymbol{w}}}^{*},{z},{{z}}^{\prime }\right)\right]}.

    基于神谕的学习模型可称之为“可优化的专家”,该模型本质上是经典的在线学习模型,即学习者通过专家的建议和一个离线神谕进行预测. 在“可优化的专家”模型中,假设最初学习者对损失函数\ell 是未知的,并允许学习者通过神谕来获取\ell . 离线神谕模型是通过学习者提交一系列的损失函数,返回使得累积损失最小的假设. 定义1给出离线神谕模型的一种近似神谕模型定义.

    定义1.[20] 一个离线神谕模型,其输入是一个损失函数 \ell :W \to \mathbb{R} 和一个d维向量{{\boldsymbol{\sigma}} },输出是一个{{\boldsymbol{w}}} \to \ell ({\boldsymbol{w}}, {z},{{z}^\prime }) - \langle {{\boldsymbol{\sigma}} },{\boldsymbol{w}}\rangle的近似最小值. 若它返回的{{\boldsymbol{w}}^*} \in W满足

    \begin{split}&\ell \left({{\boldsymbol{w}}}^{*},{z},{{z}}^{\prime }\right)-\langle {\boldsymbol{\sigma}} ,{{\boldsymbol{w}}}^{*}\rangle \le \\& \underset{{\boldsymbol{w}}\in W}{\mathrm{inf}}[\ell ({\boldsymbol{w}},{z},{{z}}^{\prime })-\langle {\boldsymbol{\sigma}} ,{\boldsymbol{w}}\rangle ]+\left(\alpha +\beta {\Vert {\boldsymbol{\sigma}} \Vert }_{1}\right),\end{split}

    则称其为“(\alpha ,\beta )-近似神谕”.

    为 方 便 起 见,将 一 个 “(\alpha ,\beta )-近 似 神 谕” 记 为{{ORA}}{{{L}}_{\alpha ,\beta }} (\ell - \langle {{\boldsymbol{\sigma}} }, \cdot \rangle ). 使用近似神谕是因为我们不可能知道一个假设是全局最小值还是仅为一个鞍点. {{ORAL}}可以输出一个{{\boldsymbol{w}}}而不需要保证其最优性. 在大多数情况下,{\boldsymbol{w}}实际上只是近似最优. 离线神谕模型 (返回{{\boldsymbol{w}}^*} \in \arg \; \min \ell ({\boldsymbol{w}}))与(\alpha ,\beta )-近似神谕模型的区别在于,近似神谕模型有一个关于变量\alpha \beta {{\boldsymbol{\sigma}} }的扰动项. 在指定变量\alpha \beta 的大小时可以获得更好的遗憾界. 近似神谕模型关于在线单点学习的应用包括的实例有:当Query-GAN算法采用近似神谕时,对于非凸损失函数以{T^{ - 1/2}}的速度收敛[21]\alpha = \dfrac{{\hat R + {R_d}(T)}}{T}\hat R为累积遗憾);FTRL和FTL(follow the leader)算法采用近似神谕时,对于半凸损失函数可以达到{T^{ - 1}}的遗憾界[22]\alpha = {T^{ - 1/2}}. 在上述应用中,\beta {\text{ = }}0,只有\alpha 被用作近似神谕的参数.

    非凸广义在线点对学习算法的原理是迭代T轮,每轮产生一个随机向量{{\boldsymbol{\sigma }}}(该向量服从关于参数\eta 的指数分布),并获得一个假设{{\boldsymbol{w}}},该假设来自于(\alpha ,\beta )-近似离线神谕模型,然后,学习者会遭受相应损失并调整假设. 算法1给出当学习者可以访问(\alpha ,\beta )-近似离线神谕的非凸广义在线点对学习的算法.

    算法1.非凸的广义在线点对学习算法.

    输入:参数\eta ,近似神谕{{ORAL}_{\alpha ,\beta }}

    输出:{{{\boldsymbol{w}}}^*} \in W.

    ① for t = 1,2, … ,T do

    ② \left\{ {{\sigma _{t,j}}} \right\}_{j = 1}^d\mathop \sim \limits^{{\rm{i}}{\rm{.i}}{\rm{.d}}} \exp (\eta );/*生成随机向量{{\boldsymbol{\sigma }}_t}*/

    ③ 学习者在时刻t的假设:

    ④  {{{\boldsymbol{w}}}_t} = {ORAL}_{\alpha ,\beta }\left( {\displaystyle \sum\limits_{i = 1}^{t - 1} {{\ell _i}} - \left\langle {{{{\boldsymbol{\sigma}} }_t}, \cdot } \right\rangle } \right)

    ⑤ 学习者遭受损失{\ell _t}

    ⑥ end for

    与在线点对学习相比,广义在线点对学习中包含一个{\boldsymbol{\sigma }}项,是一个具有更强鲁棒性、更广义的算法. 一些在线学习算法,如在线镜像下降(online mirror descent,OMD)[23]、 在线梯度下降(online gradient decent ,OGD) [24]、FTL、FTRL等,通常需要在凸甚至强凸的条件下实现收敛. 文献[20]通过损失函数的随机扰动来保证遗憾消失,这种随机扰动具有与FTRL和OMD中使用的显式正则项类似的作用,将广义在线单点学习算法扩展到非凸设置中,然而缺少关于非凸在线点对学习的内容. 针对这一问题,本文将单点学习扩展到点对设置中,通过稳定性分析将在线点对中的点对耦合进行解耦,从形式上把具有耦合的点对通过稳定性分析变换成2步假设之间的差,从而实现单点到点对学习的推广.

    算法稳定性是机器学习理论分析中一个重要的概念. 稳定性可以衡量一个学习算法的输出对训练数据集微小变化的敏感性. 对于批量学习假设中独立同分布的样本,稳定性是可学习性的一个关键特性. 类似地,对于在线学习的可学习性,稳定性条件也是同样有效的. 一种特别常用的稳定性度量方式是一致稳定性,已经被广泛应用到在线点对学习中,除此以外,还有由定义2给出的平均稳定性. 下文中用{{\boldsymbol{a}}^{\text{T}}}{\boldsymbol{b}}\langle {\boldsymbol{a}},{\boldsymbol{b}}\rangle表示{\boldsymbol{a}}{\boldsymbol{b}}之间的欧几里得点积. 用 \Vert \cdot \Vert 表示2范数, \Vert \cdot {\Vert }_{p} 来表示一个特定的{\ell _p}范数. 若 \left| {f(x) - f(y)} \right| \leqslant G\left\| {x - y} \right\|,\forall x,y \in \mathcal{C} ,则称f:\mathcal{C} \to \mathbb{R}是关于 \Vert \cdot \Vert 范数 G -Lipschitz连续的.

    定义2.[18,25] 假设学习者遭受的损失序列是G-Lipschitz连续的. 若 \exists \gamma \gt 0 使得

    \frac{1}{T}{\displaystyle \sum _{t=1}^{T}{{{E}}}}\Vert {\ell }_{t}\left({{\boldsymbol{w}}}_{t},{\textit{z}},{{\textit{z}}}^{\prime }\right)-{\ell }_{t+1}\left({{\boldsymbol{w}}}_{t+1},{\textit{z}},{{\textit{z}}}^{\prime }\right)\Vert \le G\gamma \text{,} (1)

    则称算法\mathcal{A}\gamma -平均稳定的.

    显然,平均稳定性比一致稳定性(||{\ell _t}\left( {{{{\boldsymbol{w}}}_t},z,{z^\prime }} \right) -{\ell _{t + 1}}\left( {{{{\boldsymbol{w}}}_{t + 1}},{z},{z^\prime }} \right)|| \leqslant G\gamma)更弱,因为前者要求的条件仅仅是{{{\boldsymbol{w}}}_t}的期望值和平均值满足不等式(1). 本文主要研究平均稳定性,所有定理采用的也是平均稳定性,以此放松理论分析中的假设条件.

    稳定性分析首先将广义在线点对学习的期望遗憾与平均稳定性建立联系. 如定理1所示,构建了广义在线点对学习的期望遗憾与平均稳定性的相关性.

    定理1. 假设D为决策集W \subseteq {\mathbb{R}^d}的界,学习者遭受的损失满足{\ell _1}范数的G-Lipschitz连续性. 则广义在线点对学习的遗憾上界可以表示为

    \begin{split} & \frac{1}{T}{E}\left[{\displaystyle \sum _{t=1}^{T}{\ell }_{t}}\left({{\boldsymbol{w}}}_{t},z,{z}^{\prime }\right)-\underset{{\boldsymbol{w}}\in W}{\mathrm{inf}}{\displaystyle \sum _{t=1}^{T}{\ell }_{t}}({\boldsymbol{w}},z,{z}^{\prime })\right]\le \\ & \dfrac{G}{T}{\displaystyle \sum _{t=1}^{T}\underset{\text{Stability }}{\underbrace{{E}\left[{\Vert {{\boldsymbol{w}}}_{t}-{{\boldsymbol{w}}}_{t+1}\Vert }_{1}\right]}}}+\dfrac{d(\beta T+D)}{\eta T}+\alpha . \end{split} (2)

    证明. 在“遗忘的对手”模型中,假设对手的决策{\text{\{ }}{\ell _t}{\text{\} }}_{t = 1}^T与广义在线点对学习算法的假设\{ {{\boldsymbol{w}}_t}\} _{t = 1}^T无关,假设损失函数的序列{\text{\{ }}{\ell _t}{\text{\} }}_{t = 1}^T是预先固定的. 而在“非遗忘的对手”模型中,对手的决策取决于算法过去的假设,即每个{\ell _t}由来自某函数 {L_t}:{W^{t - 1}} \to F {\ell _t}: = {L_t}[{{\boldsymbol{w}}_{ \lt t}}]给出,其中 F 是对手所有可能决策的集合,{{\boldsymbol{w}}_{ \lt t}}{{\boldsymbol{w}}_1}, {{\boldsymbol{w}}_2}, … ,{{\boldsymbol{w}}_{t - 1}}的缩写,{L_t}是一个常数函数,其中函数 {L_1},{L_2}, … ,{L_T}决定了一个非遗忘的对手. 令{P_t}是广义在线点对学习基于之前的假设{{\boldsymbol{w}}_{ \lt t}}给出的假设{{\boldsymbol{w}}_t}的条件分布,若在“遗忘的对手”中,{P_t}独立于{{\boldsymbol{w}}_{ \lt t}}. 但无论是在“遗忘的对手”模型或是“非遗忘的对手”模型中,{P_t}都完全由对手之前的决策{\ell _{ \lt t}}决定. 任何对“遗忘的对手”有界的算法对“非遗忘的对手”也有界[26],令B是一个正常数,假设广义在线点对学习满足对“遗忘的对手”的遗憾约束{E}\left[ {\displaystyle \sum\limits_{t = 1}^T {{\ell _t}({{\boldsymbol{w}}_t})} - \mathop {\inf }\limits_{{{{\boldsymbol{w}}}} \in W} \displaystyle \sum\limits_{t = 1}^T {{\ell _t}({\boldsymbol{w}})} } \right] \leqslant B, \forall {\ell _1}, {\ell _2}, … ,{\ell _T} \in F,那么它也满足对“非遗忘的对手”的遗憾约束\displaystyle \sum\limits_{t = 1}^T {{\ell _t}({P_t})} - \mathop {\inf }\limits_{{\boldsymbol{w}} \in W} \displaystyle \sum\limits_{t = 1}^T {{\ell _t}({\boldsymbol{w}})} \leqslant B.

    本文研究“遗忘的对手”设定,因此只需使用单一的随机向量{\boldsymbol{\sigma }},而不是在每次迭代中生成一个新的随机向量. {{\boldsymbol{w}}_t}({\boldsymbol{\sigma }})为非凸广义在线点对学习基于随机扰动{\boldsymbol{\sigma }},在第t次迭代时的假设.

    对于任意{{\boldsymbol{w}}^*} \in W,都有

    \begin{array}{l} \displaystyle \sum\limits_{t = 1}^T {\left[ {{\ell _t}\left( {{{\boldsymbol{w}}_t},z,{z^\prime }} \right) - {\ell _t}\left( {{{\boldsymbol{w}}^*},z,{z^\prime }} \right)} \right]} = \\ \displaystyle \sum\limits_{t = 1}^T {\left[ {{\ell _t}\left( {{{\boldsymbol{w}}_t},z,{z^\prime }} \right) - {\ell _t}\left( {{{\boldsymbol{w}}_{t + 1}},z,{z^\prime }} \right)} \right]} + \\ \displaystyle \sum\limits_{t = 1}^T {{\ell _t}\left( {{{\boldsymbol{w}}_{t + 1}},z,{z^\prime }} \right) - {\ell _t}\left( {{{\boldsymbol{w}}^*},z,{z^\prime }} \right)}\leqslant \\ \displaystyle \sum\limits_{t = 1}^T G \left\| {{{\boldsymbol{w}}_t} - {{\boldsymbol{w}}_{t + 1}}} \right\|_{1} + \\ \displaystyle \sum\limits_{t = 1}^T {\left[ {{\ell _t}\left( {{{\boldsymbol{w}}_{t + 1}},z,{z^\prime }} \right) - {\ell _t}\left( {{{\boldsymbol{w}}^*},z,{z^\prime }} \right)} \right]}\;\; . \end{array}

    \gamma ({\boldsymbol{\sigma }}) = \alpha + \beta {\left\| {\boldsymbol{\sigma }} \right\|_1}. 由归纳法证明

    \begin{split} & {\displaystyle \sum _{t=1}^{T}\left[{\ell }_{t}\left({{\boldsymbol{w}}}_{t+1},z,{z}^{\prime }\right)-{\ell }_{t}\left({{\boldsymbol{w}}}^{*},z,{z}^{\prime }\right)\right]}\le \\ & \gamma ({\boldsymbol{\sigma}} )T+\langle {\boldsymbol{\sigma }},{{\boldsymbol{w}}}_{2}-{{\boldsymbol{w}}}^{*}\rangle . \end{split}

    步骤T= 1:由于{{\boldsymbol{w}}_2}{\ell _1}({\boldsymbol{w}},z,{z^\prime }) - \langle {\boldsymbol{\sigma }},{\boldsymbol{w}}\rangle的近似最小化,因此

    \begin{split} & {\ell }_{1}\left({\boldsymbol{w}}_{2},z,{z}^{\prime }\right)-\langle \boldsymbol{\sigma} ,{\boldsymbol{w}}_{2}\rangle \le \\ & \underset{{\boldsymbol{w}}\in W}{\mathrm{min}}{\ell }_{1}(\boldsymbol{w},z,{z}^{\prime })-\langle \boldsymbol{\sigma} ,\boldsymbol{w}\rangle +\gamma (\boldsymbol{\sigma} )\le \\ & {\ell }_{1}\left({\boldsymbol{w}}^{*},z,{z}^{\prime }\right)-\langle \boldsymbol{\sigma} ,{\boldsymbol{w}}^{*}\rangle +\gamma (\boldsymbol{\sigma} ). \end{split} (3)

    式(3)中最后一个不等式对任何{{\boldsymbol{w}}^*} \in W均成立. 即

    {\ell _1}\left( {{{\boldsymbol{w}}_2},z,{z^\prime }} \right) - {\ell _1}\left( {{{\boldsymbol{w}}^*},z,{z^\prime }} \right) \leqslant \gamma ({\boldsymbol{\sigma }}) + \left\langle {{\boldsymbol{\sigma }},{{\boldsymbol{w}}_2} - {{\boldsymbol{w}}^*}} \right\rangle .

    归纳步骤:假设归纳对所有T \leqslant {T_0} - 1成立,下面证明它对{T_0}也成立.

    \begin{split} & {\displaystyle \sum _{t=1}^{{T}_{0}}{\ell }_{t}\left({\boldsymbol{w}}_{t+1},z,{z}^{\prime }\right)}\stackrel{\textcircled{\scriptsize{1}}}{\le }\\ & \left[\begin{array}{c}{\displaystyle \sum _{t=1}^{{T}_{0}-1}{\ell }_{t}}\left({\boldsymbol{w}}_{{T}_{0}+1},z,{z}^{\prime }\right)+\\ \langle \boldsymbol{\sigma} ,{\boldsymbol{w}}_{2}-{\boldsymbol{w}}_{{T}_{0}+1}\rangle +\gamma (\boldsymbol{\sigma} )\left({T}_{0}-1\right)\end{array}\right]+{\ell }_{{T}_{0}}\left({\boldsymbol{w}}_{{T}_{0}+1},z,{z}^{\prime }\right)=\\ & \left[\begin{array}{l}{\displaystyle \sum _{t=1}^{{T}_{0}}{\ell }_{t}}\left({\boldsymbol{w}}_{{T}_{0}+1},z,{z}^{\prime }\right)-\\ \langle \boldsymbol{\sigma} ,{\boldsymbol{w}}_{{T}_{0}+1}\rangle \end{array}\right]+\langle \boldsymbol{\sigma} ,{\boldsymbol{w}}_{2}\rangle +\gamma (\boldsymbol{\sigma} )\left({T}_{0}-1\right)\stackrel{\textcircled{\scriptsize{2}}}{\le }\\ & {\displaystyle \sum _{t=1}^{{T}_{0}}{\ell }_{t}}\left({\boldsymbol{w}}^{*},z,{z}^{\prime }\right)+\langle \boldsymbol{\sigma} ,{\boldsymbol{w}}_{2}-{\boldsymbol{w}}^{*}\rangle +\gamma (\boldsymbol{\sigma} ){T}_{0},\forall {\boldsymbol{w}}^{*}\in {W},\end{split}

    其中①处是由于归纳对任何T \leqslant {T_0} - 1都成立,而②处是由于{{\boldsymbol{w}}_{{T_0} + 1}}的近似最优化.

    由上述结果,得到非凸的广义在线点对学习的期望遗憾上界:

    \begin{split} {E} & \left[ {\sum\limits_{t = 1}^T {{\ell _t}} \left( {{{\boldsymbol{w}}_t},z,{z^\prime }} \right) - \mathop {\inf }\limits_{{\boldsymbol{w}} \in W} \sum\limits_{t = 1}^T {{\ell _t}} ({\boldsymbol{w}},z,{z^\prime })} \right] \leqslant \\ & G\sum\limits_{t = 1}^T {E} \left[ {{{\left\| {{{\boldsymbol{w}}_t} - {{\boldsymbol{w}}_{t + 1}}} \right\|}_1}} \right] + {E}\left[ {\gamma ({\boldsymbol{\sigma }})T + \left\langle {{\boldsymbol{\sigma }},{{\boldsymbol{w}}_2} - {{\boldsymbol{w}}^*}} \right\rangle } \right] \leqslant \\ & G\sum\limits_{t = 1}^T {E} \left[ {{{\left\| {{{\boldsymbol{w}}_t} - {{\boldsymbol{w}}_{t + 1}}} \right\|}_1}} \right] + (\beta T + D)\left( {\sum\limits_{i = 1}^d {E} \left[ {{{\sigma} _i}} \right]} \right) + \alpha T, \end{split}

    由指数分布的属性{E}\left[ {{\sigma _i}} \right] = \dfrac{1}{{{\eta _i}}},得证.证毕.

    定理1表明期望遗憾与平均稳定性相关. 式(2)中的稳定性即为定义2中的平均稳定性. 定理1的证明是受文献[26]的启发,证明了当平均稳定性的上界可得时,遗憾也可以实现收敛. 因此,定理2将着重于研究稳定项{E}\left[ {{{\left\| {{{\boldsymbol{w}}_t} - {{\boldsymbol{w}}_{t + 1}}} \right\|}_1}} \right]的上界.

    定理2. {{\boldsymbol{w}}_t}({\boldsymbol{\sigma }})为广义在线点对学习在第t次迭代时的假设,其中,{\boldsymbol{\sigma }}为随机扰动. {{\boldsymbol{e}}_i}表示第i个标准基向量,{{\boldsymbol{w}}_{t,i}}表示{{\boldsymbol{w}}_t}i坐标上的假设. 对于任意c \gt 0,都有单调性成立:

    {{\boldsymbol{w}}}_{t,i}\left(\boldsymbol{\sigma} +c{{\boldsymbol{e}}}_{i}\right)\ge {{\boldsymbol{w}}}_{t,i}(\boldsymbol{\sigma} )-\frac{2\left(\alpha +\beta {\Vert \boldsymbol{\sigma} \Vert }_{1}\right)}{c}-\beta .

    证明. 令{\ell _{1:t}}({\boldsymbol{w}},z,{z^\prime }) = \displaystyle \sum\limits_{i = 1}^t {{\ell _i}} ({\boldsymbol{w}},z,{z^\prime }){{\boldsymbol{\sigma }}^\prime } = {\boldsymbol{\sigma }} + c{{\boldsymbol{e}}_i}\gamma ({\boldsymbol{\sigma }}) = \alpha + \beta {\left\| {\boldsymbol{\sigma }} \right\|_1}为离线神谕的近似误差. 由{{\boldsymbol{w}}_t}({\boldsymbol{\sigma }})的近似最优化,得

    \begin{split}& {\ell _{1:t - 1}}\left( {{{\boldsymbol{w}}_t}({\boldsymbol{\sigma }}),z,{z^\prime }} \right) - \left\langle {{\boldsymbol{\sigma }},{{\boldsymbol{w}}_t}({\boldsymbol{\sigma }})} \right\rangle \le \\ & {\ell _{1:t - 1}}\left( {{{\boldsymbol{w}}_t}\left( {{{\boldsymbol{\sigma }}^\prime }} \right),z,{z^\prime }} \right) - \left\langle {{\boldsymbol{\sigma }},{{\boldsymbol{w}}_t}\left( {{{\boldsymbol{\sigma }}^\prime }} \right)} \right\rangle + \gamma ({\boldsymbol{\sigma }}) \stackrel{\textcircled{\scriptsize{1}}} = \\& {\ell _{1:t - 1}}\left( {{{\boldsymbol{w}}_t}\left( {{{\boldsymbol{\sigma }}^\prime }} \right),z,{z^\prime }} \right) - \left\langle {{{\boldsymbol{\sigma }}^\prime },{{\boldsymbol{w}}_t}\left( {{{\boldsymbol{\sigma }}^\prime }} \right)} \right\rangle + \\& c{{\boldsymbol{w}}_{t,i}}\left( {{{\boldsymbol{\sigma }}^\prime }} \right) + \gamma ({\boldsymbol{\sigma }})a \le \\& {\ell _{1:t - 1}}\left( {{{\boldsymbol{w}}_t}({\boldsymbol{\sigma }}),z,{z^\prime }} \right) - \left\langle {{{\boldsymbol{\sigma }}^\prime },{{\boldsymbol{w}}_t}({\boldsymbol{\sigma }})} \right\rangle + \\& c{{\boldsymbol{w}}_{t,i}}\left( {{{\boldsymbol{\sigma }}^\prime }} \right) + \gamma ({\boldsymbol{\sigma }}) + \gamma \left( {{{\boldsymbol{\sigma }}^\prime }} \right) = \\& {\ell _{1:t - 1}}\left( {{{\boldsymbol{w}}_t}({\boldsymbol{\sigma }}),z,{z^\prime }} \right) - \left\langle {{\boldsymbol{\sigma }},{{\boldsymbol{w}}_t}({\boldsymbol{\sigma }})} \right\rangle + \\& c\left( {{{\boldsymbol{w}}_{t,i}}\left( {{{\boldsymbol{\sigma }}^\prime }} \right) - {{\boldsymbol{w}}_{t,i}}({\boldsymbol{\sigma }})} \right) + \gamma ({\boldsymbol{\sigma }}) + \gamma \left( {{{\boldsymbol{\sigma }}^\prime }} \right). \end{split} (4)

    其中①处是由于{{\boldsymbol{w}}_t}\left( {{{\boldsymbol{\sigma }}^\prime }} \right)的近似最优化. 结合式(4)中的第1项和最后1项,得

    {{\boldsymbol{w}}}_{t,i}\left({\boldsymbol{\sigma}}^{\prime }\right)\ge {\boldsymbol{w}}_{t,i}(\boldsymbol{\sigma})-\dfrac{2\gamma (\boldsymbol{\sigma})}{c}-\beta . 证毕.

    定理2证明了包含随机扰动项{\boldsymbol{\sigma }}的广义在线点对学习的稳定性. 通过观察扰动向量的变化对广义在线点对学习的输出产生的影响,表明了其在一维情况下的单调性,由于在线学习中稳定性是指相邻2次迭代得到的假设之间的距离,因此,定理2得到的即为一维情况下的稳定性.

    定理3. {{\boldsymbol{w}}_t}({\boldsymbol{\sigma }})为广义在线点对学习在第t次迭代时的假设,其中{\boldsymbol{\sigma }}为随机扰动. {{\boldsymbol{e}}_i}表示第i个标准基向量,{{\boldsymbol{w}}_{t,i}}表示{{\boldsymbol{w}}_t}i坐标上的假设. 假设{\left\| {{{\boldsymbol{w}}_t}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1}}({\boldsymbol{\sigma }})} \right\|_1} \leqslant 10d\left| {{{\boldsymbol{w}}_{t,i}}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1,i}}({\boldsymbol{\sigma }})} \right|,对于{{\boldsymbol{\sigma }}^\prime } = {\boldsymbol{\sigma }} + 100Gd{{\boldsymbol{e}}_i},有单调性成立:

    \begin{split}& \mathrm{min}\left({\boldsymbol{w}}_{t,i}\left({\boldsymbol{\sigma} }^{\prime }\right),{\boldsymbol{w}}_{t+1,i}\left({\boldsymbol{\sigma} }^{\prime }\right)\right)\ge \mathrm{max}\left({\boldsymbol{w}}_{t,i}(\boldsymbol{\sigma} ),{\boldsymbol{w}}_{t+1,i}(\boldsymbol{\sigma} )\right)-\\& \dfrac{1}{10}\left|{\boldsymbol{w}}_{t,i}(\boldsymbol{\sigma} )-{\boldsymbol{w}}_{t+1,i}(\boldsymbol{\sigma} )\right|-\dfrac{3\left(\alpha +\beta {\Vert \boldsymbol{\sigma} \Vert }_{1}\right)}{100Gd}-\beta . \end{split}

    证明. 令{\ell _{1:t}}({\boldsymbol{w}},z,{z^\prime }) =\displaystyle \sum\limits_{i = 1}^t {{\ell _i}} ({\boldsymbol{w}},z,{z^\prime }){{\boldsymbol{\sigma }}^\prime } = {\boldsymbol{\sigma }} + c{{\boldsymbol{e}}_i}\gamma ({\boldsymbol{\sigma }}) = \alpha + \beta {\left\| {\boldsymbol{\sigma }} \right\|_1}为离线神谕的近似误差. 由{{\boldsymbol{w}}_t}({\boldsymbol{\sigma }})的近似最优化,得

    \begin{split}&{\ell }_{1:t-1}\left({\boldsymbol{w}}_{t}(\boldsymbol{\sigma} ),z,{z}^{\prime }\right)-\langle \boldsymbol{\sigma} ,{\boldsymbol{w}}_{t}(\boldsymbol{\sigma} )\rangle +{\ell }_{t}\left({\boldsymbol{w}}_{t}(\boldsymbol{\sigma} ),z,{z}^{\prime }\right)\le \\& {\ell }_{1:t-1}\left({\boldsymbol{w}}_{t+1}(\boldsymbol{\sigma} ),z,{z}^{\prime }\right)-\langle \boldsymbol{\sigma} ,{\boldsymbol{w}}_{t+1}(\boldsymbol{\sigma} )\rangle +\\& {\ell }_{t}\left({\boldsymbol{w}}_{t}(\boldsymbol{\sigma} ),z,{z}^{\prime }\right)+\gamma (\boldsymbol{\sigma} )\stackrel{\textcircled{\scriptsize{1}}}{\le }\\& {\ell }_{1:t-1}\left({\boldsymbol{w}}_{t+1}(\boldsymbol{\sigma} ),z,{z}^{\prime }\right)-\langle \boldsymbol{\sigma} ,{\boldsymbol{w}}_{t+1}(\boldsymbol{\sigma} )\rangle +\\& {\ell }_{t}\left({\boldsymbol{w}}_{t+1}(\boldsymbol{\sigma} ),z,{z}^{\prime }\right)+G{\Vert {\boldsymbol{w}}_{t}(\boldsymbol{\sigma} )-{\boldsymbol{w}}_{t+1}(\boldsymbol{\sigma} )\Vert }_{1}+\gamma (\boldsymbol{\sigma} )\stackrel{\textcircled{\scriptsize{2}}}{\le }\\& {\ell }_{1:t-1}\left({\boldsymbol{w}}_{t+1}(\boldsymbol{\sigma} ),z,{z}^{\prime }\right)-\langle \boldsymbol{\sigma} ,{\boldsymbol{w}}_{t+1}(\boldsymbol{\sigma} )\rangle +\\& {\ell }_{t}\left({\boldsymbol{w}}_{t+1}(\boldsymbol{\sigma} ),z,{z}^{\prime }\right)+ 10Gd\left|{\boldsymbol{w}}_{t,i}(\boldsymbol{\sigma} )-{\boldsymbol{w}}_{t+1,i}(\boldsymbol{\sigma} )\right|+\gamma (\boldsymbol{\sigma} ),\end{split} (5)

    其中①处是由于{\ell _t}( \cdot )的Lipschitz连续性,②处是由于{\left\| {{{\boldsymbol{w}}_t}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1}}({\boldsymbol{\sigma }})} \right\|_1}上的假设. 由{{\boldsymbol{w}}_{t + 1}}\left( {{{\boldsymbol{\sigma }}^\prime }} \right)的近似最优化,得

    \begin{split}&{\ell }_{1:t-1}\left({\boldsymbol{w}}_{t}(\boldsymbol{\sigma} ),z,{z}^{\prime }\right)-\langle \boldsymbol{\sigma} ,{\boldsymbol{w}}_{t}(\boldsymbol{\sigma} )\rangle +{\ell }_{t}\left({\boldsymbol{w}}_{t}(\boldsymbol{\sigma} ),z,{z}^{\prime }\right)=\\& {\ell }_{1:t-1}\left({\boldsymbol{w}}_{t}(\boldsymbol{\sigma} ),z,{z}^{\prime }\right)-\langle {\boldsymbol{\sigma} }^{\prime },{\boldsymbol{w}}_{t}(\boldsymbol{\sigma} )\rangle +{\ell }_{t}\left({\boldsymbol{w}}_{t}(\boldsymbol{\sigma} ),z,{z}^{\prime }\right)+\\& \langle 100Gd{{\boldsymbol{e}}}_{i},{\boldsymbol{w}}_{t}(\boldsymbol{\sigma} )\rangle \ge \\& {\ell }_{1:t-1}\left({\boldsymbol{w}}_{t+1}\left({\boldsymbol{\sigma} }^{\prime }\right),z,{z}^{\prime }\right)-\langle {\boldsymbol{\sigma} }^{\prime },{\boldsymbol{w}}_{t+1}\left({\boldsymbol{\sigma} }^{\prime }\right)\rangle +\\& {\ell }_{t}\left({\boldsymbol{w}}_{t+1}\left({\boldsymbol{\sigma} }^{\prime }\right),z,{z}^{\prime }\right)+100Gd{\boldsymbol{w}}_{t,i}(\boldsymbol{\sigma} )-\gamma \left({\boldsymbol{\sigma} }^{\prime }\right)=\\& {\ell }_{1:t-1}\left({\boldsymbol{w}}_{t+1}\left({\boldsymbol{\sigma} }^{\prime }\right),z,{z}^{\prime }\right)-\langle \boldsymbol{\sigma} ,{\boldsymbol{w}}_{t+1}\left({\boldsymbol{\sigma} }^{\prime }\right)\rangle -\\& \gamma \left({\boldsymbol{\sigma} }^{\prime }\right)+{\ell }_{t}\left({\boldsymbol{w}}_{t+1}\left({\boldsymbol{\sigma} }^{\prime }\right),z,{z}^{\prime }\right)+\\& 100Gd\left({\boldsymbol{w}}_{t,i}(\boldsymbol{\sigma} )-{\boldsymbol{w}}_{t+1,i}\left({\boldsymbol{\sigma} }^{\prime }\right)\right)\stackrel{\textcircled{\scriptsize{1}}}{\ge }{\ell }_{1:t-1}\left({\boldsymbol{w}}_{t+1}(\boldsymbol{\sigma} ),z,{z}^{\prime }\right)-\\& \langle \boldsymbol{\sigma} ,{\boldsymbol{w}}_{t+1}(\boldsymbol{\sigma} )\rangle +{\ell }_{t}\left({\boldsymbol{w}}_{t+1}(\boldsymbol{\sigma} ),z,{z}^{\prime }\right)+\\& 100Gd\left({\boldsymbol{w}}_{t,i}(\boldsymbol{\sigma} )-{\boldsymbol{w}}_{t+1,i}\left({\boldsymbol{\sigma} }^{\prime }\right)\right)-\gamma \left({\boldsymbol{\sigma} }^{\prime }\right)-\gamma (\boldsymbol{\sigma} ),\end{split} (6)

    其中①处是由于{{\boldsymbol{w}}_{t + 1}}({\boldsymbol{\sigma }})的近似最优化. 结合式(5)和式(6),得

    \begin{split}&{\boldsymbol{w}}_{t+1,i}\left({\boldsymbol{\sigma} }^{\prime }\right)-{\boldsymbol{w}}_{t,i}(\boldsymbol{\sigma} )\ge \\& -\dfrac{1}{10}\left|{\boldsymbol{w}}_{t,i}(\boldsymbol{\sigma} )-{\boldsymbol{w}}_{t+1,i}(\boldsymbol{\sigma} )\right|-\dfrac{3\gamma (\boldsymbol{\sigma} )}{100Gd}-\beta . \end{split} (7)

    同理

    \begin{split}&{\boldsymbol{w}}_{t,i}\left({\boldsymbol{\sigma} }^{\prime }\right)-{\boldsymbol{w}}_{t+1,i}(\boldsymbol{\sigma} )\ge \\& -\dfrac{1}{10}\left|{\boldsymbol{w}}_{t,i}(\boldsymbol{\sigma} )-{\boldsymbol{w}}_{t+1,i}(\boldsymbol{\sigma} )\right|-\dfrac{3\gamma (\boldsymbol{\sigma} )}{100Gd}-\beta . \end{split} (8)

    从定理2中的单调性,得

    {{\boldsymbol{w}}_{t + 1,i}}\left( {{{\boldsymbol{\sigma }}^\prime }} \right) - {{\boldsymbol{w}}_{t + 1,i}}({\boldsymbol{\sigma }}) \geqslant - \frac{{3\gamma ({\boldsymbol{\sigma }})}}{{100Gd}} - \beta ,\quad (9)
    {\boldsymbol{w}}_{t,i}\left({\boldsymbol{\sigma} }^{\prime }\right)-{\boldsymbol{w}}_{t,i}(\boldsymbol{\sigma} )\ge -\frac{3\gamma (\boldsymbol{\sigma} )}{100Gd}-\beta . (10)

    结合上述不等式(7)~(10)得证. 证毕.

    定理3证明了d维情况下广义在线点对学习的稳定性. 虽然d维相较于一维的单调性证明会更具挑战性,但可以通过分别改变扰动项的每个坐标来有效地将分析减少到一维. 同理,定理2由单调性表明在线点对学习的稳定性可得d维情况下的稳定性.

    利用定理1所给出的非凸的广义在线点对学习稳定性分析,对其遗憾界进行研究. 由于定理2和定理3分别给出了一维和高维情况稳定性{E}\left[ {{{\left\| {{{\boldsymbol{w}}_t} - {{\boldsymbol{w}}_{t + 1}}} \right\|}_1}} \right]的界,结合定理2和定理3引导定理4,对定理4进行讨论.

    定理4. 假设D为决策集W \subseteq {\mathbb{R}^d}的界. 学习者遭受的损失满足{\ell _1}范数的G-Lipschitz连续性. 学习者可访问 (\alpha, \beta) -近似神谕. 对于任意\eta ,广义在线点对学习的假设都满足遗憾界:

    \begin{split}&\left[\dfrac{1}{T}{\displaystyle \sum _{t=1}^{T}{\ell }_{t}}\left({{\boldsymbol{w}}}_{t},z,{z}^{\prime }\right)-\dfrac{1}{T}\underset{{\boldsymbol{w}}\in W}{\mathrm{inf}}{\displaystyle \sum _{t=1}^{T}{\ell }_{t}}({\boldsymbol{w}},z,{z}^{\prime })\right]\le \\ & O\left(\eta {d}^{2}D{G}^{2}+\dfrac{d(\beta T+D)}{\eta T}+\alpha +\beta dG\right). \end{split}

    证明. 使用与定理2和定理3中相同的符号定义,{E}\left[ {{{\left\| {{{\boldsymbol{w}}_t}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1}}({\boldsymbol{\sigma }})} \right\|}_1}} \right]也记作

    \begin{split} & {E}\left[ {{{\left\| {{{\boldsymbol{w}}_t}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1}}({\boldsymbol{\sigma }})} \right\|}_1}} \right] =\displaystyle \sum\limits_{i = 1}^d {E} \left[ {\left| {{{\boldsymbol{w}}_{t,i}}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1,i}}({\boldsymbol{\sigma }})} \right|} \right]. \\ \end{split} (11)

    因此,由{E}\left[ {\left| {{{\boldsymbol{w}}_{t,i}}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1,i}}({\boldsymbol{\sigma }})} \right|} \right],\forall i \in [d]的界,可得{E}\left[ {{{\left\| {{{\boldsymbol{w}}_t}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1}}({\boldsymbol{\sigma }})} \right\|}_1}} \right]的界. 对于任意的i \in [d],定义{{E}_{ - i}}\left[ {\left| {{{\boldsymbol{w}}_{t,i}}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1,i}}({\boldsymbol{\sigma }})} \right|} \right]

    \begin{split}&{{E}}_{-i}\left[\left|{\boldsymbol{w}}_{t,i}(\boldsymbol{\sigma} )-{\boldsymbol{w}}_{t+1,i}(\boldsymbol{\sigma} )\right|\right] := {E} \left[\left| {\boldsymbol{w}}_{t,i}(\boldsymbol{\sigma} )-{\boldsymbol{w}}_{t+1,i}(\boldsymbol{\sigma} ) \right| \bigg| {\left\{{\sigma }_{j}\right\}}_{j\ne i}\right],\end{split}

    其中 {\sigma _j} {\boldsymbol{\sigma }} j 个坐标值.

    {{\boldsymbol{w}}_{\max ,i}}({\boldsymbol{\sigma }}) = \max \left( {{{\boldsymbol{w}}_{t,i}}({\boldsymbol{\sigma }}),{{\boldsymbol{w}}_{t + 1,i}}({\boldsymbol{\sigma }})} \right). 类似地,令{{\boldsymbol{w}}_{\min ,i}}({\boldsymbol{\sigma }}) = \min \left( {{{\boldsymbol{w}}_{t,i}}({\boldsymbol{\sigma }}),{{\boldsymbol{w}}_{t + 1,i}}({\boldsymbol{\sigma }})} \right). 则

    \begin{split} &{{E}_{ - i}}\left[ {\left| {{{\boldsymbol{w}}_{t,i}}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1,i}}({\boldsymbol{\sigma }})} \right|} \right] = {{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\max ,i}}({\boldsymbol{\sigma }})} \right] - {{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\min ,i}}({\boldsymbol{\sigma }})} \right]. \\ \end{split}

    定义

    \varepsilon = \left\{ \begin{gathered} {\boldsymbol{\sigma }}:{\left\| {{{\boldsymbol{w}}_t}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1}}({\boldsymbol{\sigma }})} \right\|_1} \leqslant \\ 10d\left| {{{\boldsymbol{w}}_{t,i}}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1,i}}({\boldsymbol{\sigma }})} \right| \\ \end{gathered} \right\}.

    对式(12)中的{T_1},{T_2}求取下界:

    \begin{split} &{{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\min ,i}}({\boldsymbol{\sigma }})} \right] = \\ & {P}\left( {{\sigma _i} < 100Gd} \right)\underbrace {{{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{{\text{min}},i}}({\boldsymbol{\sigma }})|{\sigma _i} < 100Gd} \right]}_{{T_1}} + \\ & \underbrace {{P}\left( {{\sigma _i} \geqslant 100Gd} \right){{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\min ,i}}({\boldsymbol{\sigma }})|{\sigma _i} \geqslant 100Gd} \right]}_{{T_2}}. \\ \end{split} (12)

    由于第 i 个坐标的域位于某个长度为D的区间内,并且由于{T_1}{{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\max ,i}}({\boldsymbol{\sigma }})} \right]是这个区间的点,它们的差值被D所界限. 所以{T_1}的下界为{{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\max ,i}}({\boldsymbol{\sigma }})} \right] - D.{T_2}重新定义为:

    \begin{split} &{T_2} = {P}\left( {{\sigma _i} \geqslant 100Gd} \right){{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\min ,i}}({\boldsymbol{\sigma }})|{B_i} \geqslant 100Gd} \right] = \\ & \displaystyle \int_{{\sigma _i} = 100Gd}^\infty {{{\boldsymbol{w}}_{\min ,i}}} ({\boldsymbol{\sigma }})P\left( {{\sigma _i}} \right){\text{d}}{\sigma _i} = \\ & \displaystyle \int_{{\sigma _i} = 100Gd}^\infty {{{\boldsymbol{w}}_{\min ,i}}} ({\boldsymbol{\sigma }})\eta \exp ( - \eta {\sigma _i}{\text{)d}}{\sigma _i}. \\ \end{split}

    改变积分中的1个变量,令{\sigma _i} = \sigma _i^\prime + 100Gd{{\boldsymbol{\sigma }}^\prime } = \left( {{\sigma _1},{\sigma _2}, … ,{\sigma _{i - 1}},\sigma _i^\prime ,{\sigma _{i + 1}}, … } \right)是将在第 i 个坐标的{\boldsymbol{\sigma }}替换为\sigma _i^\prime 得到的向量,得

    \begin{split} & \int_{{\sigma _i} = 100Gd}^\infty {{{\boldsymbol{w}}_{\min ,i}}} ({\boldsymbol{\sigma }})\eta \exp \left( { - \eta {\sigma _i}} \right){\text{d}}{\sigma _i} = \\ & \int_{\sigma _i^\prime = 0}^\infty {{{\boldsymbol{w}}_{\min ,i}}} \left( {{{\boldsymbol{\sigma }}^\prime } + 100Gd{{\boldsymbol{e}}_i}} \right)\eta \exp \left( { - \eta \left( {\sigma _i^\prime + 100Gd} \right)} \right){\text{d}}\sigma _i^\prime = \\ & \exp \left( { - 100\eta Gd} \right) \times\\ & \int_{\sigma _i^\prime = 0}^\infty {{{\boldsymbol{w}}_{\min ,i}}} \left( {{{\boldsymbol{\sigma }}^\prime } + 100Gd{{\boldsymbol{e}}_i}} \right)\eta \exp \left( { - \eta \sigma _i^\prime } \right){\text{d}}\sigma _i^\prime = \\ & \exp \left( { - 100\eta Gd} \right){{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\min ,i}}\left( {{{\boldsymbol{\sigma }}^\prime } + 100Gd{{\boldsymbol{e}}_i}} \right)} \right]. \\ \end{split}

    {T_2} = \exp \left( { - 100\eta Gd} \right){{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\min ,i}}\left( {{\boldsymbol{\sigma }} + 100Gd{{\boldsymbol{e}}_i}} \right)} \right]. 将{T_1},{T_2}的下界代入式(12)中,可得

    \begin{split} & {{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\min ,i}}({\boldsymbol{\sigma }})} \right] \geqslant \\ & (1 - \exp ( - 100\eta Gd))\left( {{{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\max ,i}}({\boldsymbol{\sigma }})} \right] - D} \right) + \\ & \exp ( - 100\eta Gd){{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\min ,i}}\left( {{\boldsymbol{\sigma }} + 100Gd{{\boldsymbol{e}}_i}} \right)} \right]. \\ \end{split}

    {{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\min ,i}}({\boldsymbol{\sigma }})} \right]下界:

    \begin{split}& {{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\min ,i}}({\boldsymbol{\sigma }})} \right] \geqslant \\ & (1 - \exp ( - 100\eta Gd))\left( {{{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\max ,i}}({\boldsymbol{\sigma }})} \right] - D} \right) + \\ & \exp ( - 100\eta Gd) \times\\ \end{split}
    \begin{split}& {{P}_{ - i}}({\varepsilon}){{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\min ,i}}\left( {{\boldsymbol{\sigma }} + 100Gd{{\boldsymbol{e}}_i}} \right)|{\varepsilon}} \right] + \\ & \exp ( - 100\eta Gd)\times \\ & {{P}_{ - i}}\left( {{{\varepsilon}^c}} \right){{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\min ,i}}\left( {{\boldsymbol{\sigma }} + 100Gd{{\boldsymbol{e}}_i}} \right)|{{\varepsilon}^c}} \right], \qquad\;\;\\ \end{split}

    其中{{P}_{ - i}}({\varepsilon}): = {P}\left( {{\varepsilon}|{{\left\{ {{\sigma _j}} \right\}}_{j \ne i}}} \right). 由定理2和定理3证明的单调性,得{{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\min ,i}}({\boldsymbol{\sigma }})} \right]下界. \gamma ({\boldsymbol{\sigma }}) = \alpha + \beta {\left\| {\boldsymbol{\sigma }} \right\|_1},则

    \begin{split}& {{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\min ,i}}({\boldsymbol{\sigma }})} \right] \geqslant \\ & (1 - \exp ( - 100\eta Gd))\left( {{{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\max ,i}}({\boldsymbol{\sigma }})} \right] - D} \right) + \\ & \exp ( - 100\eta Gd){{P}_{ - i}}({\varepsilon})\times \\ & {{E}_{ - i}}\left. {\left[ \begin{gathered} {{\boldsymbol{w}}_{\max ,i}}({\boldsymbol{\sigma }}) - \frac{1}{{10}}\left| {{{\boldsymbol{w}}_{t,i}}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1,i}}({\boldsymbol{\sigma }})} \right| - \\ \frac{{3\gamma ({\boldsymbol{\sigma }})}}{{100Gd}} - \beta |{\varepsilon} \\ \end{gathered} \right.} \right] + \\ & \exp ( - 100\eta Gd){{P}_{ - i}}\left( {{{\varepsilon}^c}} \right){{E}_{ - i}}\left[ \begin{gathered} {{\boldsymbol{w}}_{\min ,i}}({\boldsymbol{\sigma }}) - \frac{{2\gamma ({\boldsymbol{\sigma }})}}{{100Gd}} - \\ \beta \mid {{\varepsilon}^c} \\ \end{gathered} \right] \geqslant \\& (1 - \exp ( - 100\eta Gd))\left( {{{E}_{ - i}}\left[ {{{\boldsymbol{w}}_{\max ,i}}({\boldsymbol{\sigma }})} \right] - D} \right) + \\& \exp ( - 100\eta Gd){{P}_{ - i}}({\varepsilon}){{E}_{ - i}}\left. {\left[ \begin{gathered} {{\boldsymbol{w}}_{\max ,i}}({\boldsymbol{\sigma }}) - \\ \frac{1}{{10}}\left| {{{\boldsymbol{w}}_{t,i}}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1,i}}({\boldsymbol{\sigma }})} \right| - \\ \frac{{3\gamma ({\boldsymbol{\sigma }})}}{{100Gd}} - \beta |{\varepsilon} \\ \end{gathered} \right.} \right] + \\ & \exp ( - 100\eta Gd)\times \\& {{P}_{ - i}}\left( {{{\varepsilon}^c}} \right){{E}_{ - i}}\left. {\left[ \begin{gathered} {{\boldsymbol{w}}_{\max ,i}}({\boldsymbol{\sigma }}) - \frac{1}{{10d}}{\left\| {{{\boldsymbol{w}}_t}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1}}({\boldsymbol{\sigma }})} \right\|_1} - \\ \frac{{2\gamma ({\boldsymbol{\sigma }})}}{{100Gd}} - \beta |{{\varepsilon}^c} \\ \end{gathered} \right.} \right], \\ \end{split} (13)

    其中式(13)中第1个不等式来自于定理2和定理3,第2个不等式来自于{\varepsilon ^c}的定义. 由{{P}_{ - i}}(\varepsilon) \leqslant 1,可得

    $$ \begin{split} & {{{E}_{ - i}}\left[ {{\boldsymbol{w}_{{\rm{min}},i}}(\boldsymbol{\sigma} )} \right] \ge }\\& {(1 - {\rm{exp}}( - 100\eta Gd))\left( {{{E}_{ - i}}\left[ {{\boldsymbol{w}_{{\rm{max}},i}}(\boldsymbol{\sigma} )} \right] - D} \right) + }\\& {{\rm{exp}}( - 100\eta Gd){{E}_{- i}}\left[ {{\boldsymbol{w}_{{\rm{max}},i}}(\boldsymbol{\sigma} ) - \dfrac{{3\gamma (\boldsymbol{\sigma} )}}{{100Gd}} - \beta } \right] - }\\& {{\rm{exp}}( - 100\eta Gd){{E}_{ - i}}\left[{{\begin{array}{*{20}{l}} {\dfrac{1}{{10}}\left| {{\boldsymbol{w}_{t,i}}(\boldsymbol{\sigma} ) - {\boldsymbol{w}_{t + 1,i}}(\boldsymbol{\sigma} )} \right| + }\\ \dfrac{1}{{10d}}\left\| {{\boldsymbol{w}_t}(\boldsymbol{\sigma} ) - {\boldsymbol{w}_{t + 1}}(\boldsymbol{\sigma} )} \right\|_1 \end{array}}}\right]{\stackrel{\textcircled{\scriptsize{1}}} {\ge}} } \\& {{{E}_{ - i}}\left[ {{\boldsymbol{w}_{{\rm{max}},i}}(\boldsymbol{\sigma} )} \right] - 100\eta GdD - \dfrac{{3\gamma (\boldsymbol{\sigma} )}}{{100Gd}} - } \\& \beta - {{E}_{ - i}}\left[ {\dfrac{{\dfrac{1}{{10}}\left| {{{{\boldsymbol{w}}}_{t,i}}({{\boldsymbol{\sigma} }}) - {{{\boldsymbol{w}}}_{t + 1,i}}({{\boldsymbol{\sigma} }})} \right|{\rm{ + }}}}{{\dfrac{1}{{10d}}{{\left\| {{{{\boldsymbol{w}}}_t}({{\boldsymbol{\sigma} }}) - {{{\boldsymbol{w}}}_{t + 1}}({{\boldsymbol{\sigma} }})} \right\|}_1}}}} \right], \end{split} $,$

    其中①处是由于\exp ({\boldsymbol{w}}) \geqslant 1 + {\boldsymbol{w}}. 得

    \begin{split} &{{E}_{ - i}}\left[ {\left| {{{\boldsymbol{w}}_{t,i}}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1,i}}({\boldsymbol{\sigma }})} \right|} \right] \leqslant \\ & \frac{1}{{9d}}{{E}_{ - i}}\left[ {{{\left\| {{{\boldsymbol{w}}_t}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1}}({\boldsymbol{\sigma }})} \right\|}_1}} \right] + \\ & \frac{{1000}}{9}\eta GdD + \frac{{{{E}_{ - i}}[\gamma ({\boldsymbol{\sigma }})]}}{{30Gd}} + \frac{{10}}{9}\beta . \end{split} (14)

    由于式(14)对任意{\left\{ {{\sigma _j}} \right\}_{j \ne i}}均成立,因此可得无条件期望的界:

    \begin{split} &{{E}_{ - i}}\left[ {\left| {{{\boldsymbol{w}}_{t,i}}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1,i}}({\boldsymbol{\sigma }})} \right|} \right] \leqslant \\ & \frac{1}{{9d}}{{E}_{ - i}}\left[ {{{\left\| {{{\boldsymbol{w}}_t}({\boldsymbol{\sigma }}) - {{\boldsymbol{w}}_{t + 1}}({\boldsymbol{\sigma }})} \right\|}_1}} \right] + \\ & \frac{{1000}}{9}\eta GdD + \dfrac{{{E}[\gamma ({\boldsymbol{\sigma }})]}}{{30Gd}} + \frac{{10}}{9}\beta . \end{split} (15)

    将式(15)代入到式(11)中,可得稳定性界:

    \begin{split}&{E}\left[{\Vert {\boldsymbol{w}}_{t}(\boldsymbol{\sigma})-{\boldsymbol{w}}_{t+1}(\boldsymbol{\sigma})\Vert }_{1}\right]\le \\& 125\eta G{d}^{2}D+\dfrac{\beta d}{20\eta G}+2\beta d+\dfrac{\alpha }{20G}\text{,}\end{split} (16)

    将式(16)代入式(2)中,得证. 证毕.

    由定理4知,若取\eta = \dfrac{d}{{{d^{3/2}}{T^{1/2}} - d}},可得遗憾界O\left( {{d^{3/2}}{T^{ - 1/2}} + \alpha + \beta {d^{3/2}}{T^{1/2}}} \right). 此外,若取\alpha = O\left( {{T^{ - 1/2}}} \right), \; \beta = O\left( {{T^{ - 1}}} \right),可得遗憾界O\left( {{T^{ - 1/2}}} \right). 关于在线点对学习的理论分析的结论如表1所示.

    表  1  在线点对学习遗憾界对比
    Table  1.  Comparison of Online Pairwise Learning Regret Bounds
    基本假设遗憾界
    一致有界的强凸损失函数O({T^{ - 1}})[8]
    具有最小平方损失函数的RKHSO\left( {{T^{ - 1/3}}\log T} \right)[10]
    正则的RKHSO\left( {{T^{ - 1/4}}\log {T^{1/2}}} \right)[12]
    具有最小平方损失函数的RKHSO\left( {{T^{ - 1/2}}} \right)[11]
    具有最小平方损失函数的正则RKHSO\left( {{T^{ - 2/3}}} \right)[13]
    具有非凸损失函数的广义在线学习(本文)O({T^{ - 1/2}})
    下载: 导出CSV 
    | 显示表格

    表1可知,本文对具有非凸损失函数的广义在线点对学习得到了O({T^{ - 1/2}})的遗憾界优于已有的遗憾界.

    本文通过引入随机噪声提出了广义在线点对学习框架. 基于文献[26]提出的近似神谕的近似最优假设,提出了非凸广义在线点对学习算法. 进一步,对广义在线点对学习进行泛化性研究,通过稳定性分析,得到广义在线点对学习的遗憾界O({T^{ - 1/2}}).

    基于在线梯度下降算法,可进一步研究具有非凸损失函数的在线点对学习的遗憾界. 此外,本文中的遗憾界和平均稳定性结果是建立在期望意义下的,而如何得到高概率的界也是未来可进行的工作.

    作者贡献声明:郎璇聪负责研究方案的设计、证明推导,以及论文的撰写和修改;李春生指导论文撰写与修改;刘勇提出论文研究思路、设计研究方案;王梅指导论文结构设计.

  • 图  1   FABSS 框架

    Figure  1.   The framework of FABSS

    图  2   时间的二叉进化树

    Figure  2.   Binary evolutionary tree of time

    图  3   密钥生成算法性能分析

    Figure  3.   Performance analysis of key generation algorithm

    图  5   验证算法性能分析

    Figure  5.   Performance analysis of verifying algorithm

    图  4   签名算法性能分析

    Figure  4.   Performance analysis of signing algorithm

    图  6   净化算法性能分析

    Figure  6.   Performance analysis of sanitization algorithm

    表  1   方案比较

    Table  1   Comparison of Schemes

    方案 匿名性净化性前向安全性透明性访问控制
    文献[21]
    文献[29]
    文献[31]
    文献[33]
    FABSS
    注:“√”表示方案支持该性质;“╳”表示方案不支持该性质.
    下载: 导出CSV

    表  2   通信开销比较

    Table  2   Comparison of Communication Cost

    方案密钥签名净化签名
    FABSS[|{\widehat{\omega } }_{\mathrm{a} }|+\eta -1+(l+2)|{\widehat{\omega } }_{\mathrm{a} }|]{|G}_{1}|5 {|G}_{1}| 5| {G}_{1}|
    文献[29](2+|{\widehat{\omega } }_{\mathrm{a} }|){|G}_{1}| (2{|{\widehat{\omega }}_{\mathrm{a}}|}^{2}+2){|G}_{1}| (2{|{\widehat{\omega }}_{\mathrm{a}}|}^{2}+2){|G}_{1}|
    文献[31](2|{\widehat{\omega } }_{\mathrm{a} }|+2){|G}_{1}|+|{{\mathbb{Z}}}_{p}^{*}| (3|{\widehat{\omega }}_{\mathrm{a}}|+|{\widehat{\omega }}_{\mathrm{\tau }}|+3){|G}_{1}| (3|{\widehat{\omega }}_{\mathrm{a}}|+|{\widehat{\omega }}_{\mathrm{\tau }}|+3){|G}_{1}|
    注: {|G}_{1}| 表示群 {G}_{1} 中元素的大小, |{\mathbb{Z}}_{p}^{*}| 表示环 {\mathbb{Z}}_{p}^{*} 中元素的比特大小, |{\widehat{\omega }}_{\mathrm{a}}| 表示签名者属性数量, |{\widehat{\omega }}_{\mathrm{\tau }}| 表示净化者属性数量, l 表示时间二叉树层数, \eta = n + d - 1 n 是常数, d 是门限值.
    下载: 导出CSV

    表  3   计算开销比较

    Table  3   Comparison of Computation Cost

    方案密钥生成签名验证净化
    FABSS[(4+ \eta +l )| {\widehat{\omega }}_{\mathrm{a}} |]E[(3+l)| {\widehat{\omega }}_{\mathrm{a}} |+| {\widehat{\omega }}_{\mathrm{\tau }} |+13+ {n}_{m} ]E(l+ {n}_{m} )E+5P(8+l+ I+{n}_{m} )E
    文献[29](| {\widehat{\omega }}_{\mathrm{a}} |+1)E(3| {\widehat{\omega }}_{\mathrm{a}} + {n}_{m} +2)E(3+| {\widehat{\omega }}_{\mathrm{a}} )P+(| {\widehat{\omega }}_{\mathrm{a}} |+ {n}_{m} )E(|{\widehat{\omega } }_{\mathrm{a} }|+I+{n}_{m})E
    文献[31](3+3| {\widehat{\omega }}_{\mathrm{a}} |)E(3| {\widehat{\omega }}_{\mathrm{a}} |+2| {\widehat{\omega }}_{\mathrm{\tau }} |+l+4v+6)E(| {\widehat{\omega }}_{\mathrm{a}} |+| {\widehat{\omega }}_{\mathrm{\tau }} |+3)P+lE(| {\widehat{\omega }}_{\mathrm{a}} |+| {\widehat{\omega }}_{\mathrm{\tau }} |+|I|+l+4)E
    注: {n}_{m} 表示消息长度, I 表示可净化范围集合,E表示 {G}_{1} 中的指数运算,P表示配对运算, \left|{\widehat{\omega }}_{\mathrm{a}}\right| 表示签名者属性数量, \left|{\widehat{\omega }}_{\mathrm{\tau }}\right| 表示净化者属性数量, l 表示时间二叉树层数, \eta =n+d-1 n 是常数, d 是门限值.
    下载: 导出CSV
  • [1]

    Sahai A, Waters B. Fuzzy identity-based encryption[C] //Proc of the 24th Annual Int Conf on the Theory and Applications of Cryptographic Techniques. Berlin: Springer, 2005: 457−473

    [2]

    Goyal V, Pandey O, Saha A, et al. Attribute-based encryption for fine-grained access control of encrypted data[C] //Proc of the 13th ACM Conf on Computer and Communications Security. New York: ACM, 2006: 89–98

    [3]

    Li Jiguo, Yao Wei, Zhang Yichen, et al. Flexible and fine-grained attribute-based data storage in cloud computing[J]. IEEE Transactions on Services Computing, 2017, 10(5): 785−796 doi: 10.1109/TSC.2016.2520932

    [4]

    Chen Ningyu, Li Jiguo, Zhang Yichen, et al. Efficient CP-ABE scheme with shared decryption in cloud storage[J]. IEEE Transactions on Computers, 2022, 71(1): 175−184 doi: 10.1109/TC.2020.3043950

    [5]

    Li Jiguo, Chen Ningyu, Zhang Yichen. Extended file hierarchy access control scheme with attribute based encryption in cloud computing[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(2): 983−993 doi: 10.1109/TETC.2019.2904637

    [6]

    Li Jiguo, Wang Yao, Zhang Yichen, et al. Full verifiability for outsourced decryption in attribute based encryption[J]. IEEE Transactions on Services Computing, 2020, 13(3): 478−487 doi: 10.1109/TSC.2017.2710190

    [7]

    Li Jiguo, Yao Wei, Han Jinguang, et al. User collusion avoidance CP-ABE with efficient attribute revocation for cloud storage[J]. IEEE Systems Journal, 2018, 12(2): 1767−1777 doi: 10.1109/JSYST.2017.2667679

    [8]

    Li Jiguo, Yu Qihong, Zhang Yichen. Hierarchical attribute based encryption with continuous leakage-resilience[J]. Information Sciences, 2019, 484: 113−134 doi: 10.1016/j.ins.2019.01.052

    [9]

    Li Jiguo, Zhang Yichen, Ning Jianting, et al. Attribute based encryption with privacy protection and accountability for cloudIoT[J]. IEEE Transactions on Cloud Computing, 2022, 10(2): 762−773

    [10]

    Lin Suqing, Zhang Rui, Ma Hui, et al. Revisiting attribute-based encryption with verifiable outsourced decryption[J]. IEEE Transactions on Information Forensics & Security, 2017, 10(10): 2119−2130

    [11]

    Liu Ximeng, Ma Jianfeng, Xiong Jinbo, et al. Ciphertext-policy hierarchical attribute-based encryption for fine-grained access control of encryption data[J]. International Journal of Network Security, 2014, 16(6): 437−443

    [12]

    Chen Yu, Li Jiguo, Liu Chengdong, et al. Efficient attribute-based server-aided verification signature [J/OL]. IEEE Transactions on Services Computing, 2022, 15(6): 3224-3232

    [13]

    Li Jiguo, Chen Yu, Han Jinguang, et al. Decentralized attribute-based server-aid signature in the Internet of things[J]. IEEE Internet of Things Journal, 2021, 9(6): 4573−4583

    [14]

    Okamoto T, Takashima K. Decentralized attribute-based signatures [C] //Proc of the 16th Int Conf on Practice and Theory in Public Key Cryptography. Berlin: Springer, 2013: 125−142

    [15]

    Sreenivasa R Y, Dutta R. Efficient attribute-based signature and signcryption realizing expressive access structures[J]. International Journal of Information Security, 2016, 15(1): 81−109 doi: 10.1007/s10207-015-0289-6

    [16]

    Bethencourt J, Sahai A, Waters B. Ciphertext-policy attribute-based encryption [C] //Proc of the 28th IEEE Symp on Security and Privacy (SP '07). Los Alamitos, CA: IEEE Computer Society, 2007: 321−334

    [17]

    Maji K, Prabhakaran M, Rosulek M. Attribute-based signatures[C] //Proc of the 11th Int Conf on Topics in Cryptology. Berlin: Springer, 2011: 376−392

    [18]

    Okamoto T, Takashima K. Efficient attribute-based signatures for non-monotone predicates in the standard model[C] //Proc of the 14th Int Conf on. Practice and Theory in Public Key Cryptography. Berlin: Springer, 2011: 125−142

    [19]

    Gagn, Martin, Narayan S, et al. Short pairing-efficient threshold attribute-based signature[C] //Proc of the 5th Int Conf on Pairing-Based Cryptography. Berlin: Springer , 2012: 295−313

    [20]

    Anada H, Arita S, Sakurai K. Attribute-based signatures without pairings via the fiat-shamir paradigm[C] //Proc of the 9th ACM Workshop on ASIA Public key Cryptography. New York: ACM 2014: 49−58

    [21]

    Wei Jianghong, Liu Wenfen, Hu Xuexian. Forward-secure threshold attribute-based signature scheme[J]. The Computer Journal, 2015, 58(10): 2492−2506 doi: 10.1093/comjnl/bxu095

    [22]

    Rao Y S. Signature-policy attribute-based key-insulated signature[J]. IET Information Security, 2017, 11(1): 23−33 doi: 10.1049/iet-ifs.2015.0355

    [23]

    Ateniese G, Chou D H, De Medeiros B, et al. Sanitizable signatures [C] //Proc of the 10th European Symp on Research in Computer Security. Berlin: Springer, 2005: 159−177

    [24]

    Agrawal S, Kumar S, Shareef A, et al. Sanitizable signatures with strong transparency in the standard model[C] //Proc of the 5th Int Conf on Information Security and Cryptology. Berlin: Springer, 2009: 93−107

    [25]

    Pöhls Henrich C, Samelin K, Posegga J. Sanitizable signatures in XML signature—Performance, mixing properties, and revisiting the property of transparency[C] //Proc of the 9th Int Conf on Applied Cryptography and Network Security. Berlin: Springer, 2011: 166−182

    [26]

    Beck M T, Camenisch J, Derler D, et al. Practical strongly invisible and strongly accountable sanitizable signatures[C] //Proc of the 22nd Australasian Conf on Information Security and Privacy (ACISP 2017). Berlin: Springer, 2017: 437−452

    [27] 刘西蒙,马建峰,熊金波,等. 基于属性的可净化签名方案[J]. 通信学报,2013,34(S1):148−155

    Liu Ximeng, Ma Jianfeng, Xiong Jinbo, et al. Attribute based sanitizable signature scheme[J]. Journal on Communications, 2013, 34(S1): 148−155 (in Chinese)

    [28] 莫若,马建峰,刘西蒙,等. 一种支持树形访问结构的属性基可净化签名方案[J]. 电子学报,2017,45(11):2715−2720 doi: 10.3969/j.issn.0372-2112.2017.11.019

    Mo Ruo, Ma Jianfeng, Liu Ximeng, et al. An attribute-based sanitizable signature supporting dendritic access structure[J]. Acta Electronica Sinica, 2017, 45(11): 2715−2720 (in Chinese) doi: 10.3969/j.issn.0372-2112.2017.11.019

    [29]

    Mo Ruo, Ma Jianfeng, Liu Ximeng, et al. FABSS: Attribute-based sanitizable signature for flexible access structure[C] //Proc of the 19th Int Conf on Information and Communications Security. Berlin: Springer, 2018: 39−50

    [30]

    Samelin K, Slamanig D. Policy-based sanitizable signatures [C] //Proc of the Cryptographers' Track at the RSA Conf . Berlin: Springer, 2020: 538−563

    [31] 李继国,朱留富,刘成东,等. 标准模型下证明安全的可追踪属性基净化签名方案[J]. 计算机研究与发展,2021,58(10):2253−2264 doi: 10.7544/issn1000-1239.2021.20210669

    Li Jiguo, Zhu Liufu, Liu Chengdong, et al. Provably secure traceable attribute-based sanitizable signature scheme in the standard model[J]. Journal of Computer Research and Development, 2021, 58(10): 2253−2264 (in Chinese) doi: 10.7544/issn1000-1239.2021.20210669

    [32]

    Canetti R, Halevi S, Katz J. A forward-secure public-key encryption scheme[J]. Journal of Cryptology, 2007, 20(3): 265−294 doi: 10.1007/s00145-006-0442-5

    [33]

    Zhang Jixin, Chen Jiageng, Meng Weizhi. Efficient attribute-based signature for monotone predicates[C] //Proc of the Int Conf on Provable Security (ProvSec 2021). Berlin: Springer, 2021: 346−362

图(6)  /  表(3)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  28
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-13
  • 修回日期:  2022-12-22
  • 网络出版日期:  2023-05-03
  • 刊出日期:  2023-11-30

目录

/

返回文章
返回