高级检索

    基于多路编码器和双重注意力的古画修复算法

    Ancient Painting Inpainting Algorithm Based on Multi-Channel Encoder and Dual Attention

    • 摘要: 绘画是重要的文化艺术形式,数千年以来,我国古代产生了大量的绘画作品,包含有丰富的文化、艺术、科学与历史价值,但是由于自然灾害(地震)与自然风化以及人类越来越多的经济活动等种种原因导致部分绘画作品存在或多或少的残损或者大块缺失,严重影响了基于这些绘画作品的鉴赏、文化创意、文化传播等活动. 与自然图像相比,古画图像的自相似性通常较高,有着明显的风格特点、丰富和细腻的纹理. 尽管目前在自然图像上的修复技术已经取得了令人印象深刻的进展,但是这些算法还不能直接用于中国古画的修复. 结合中国古画的特点对算法和模型结构进行设计,提出了基于多路编码器和双重注意力机制的中国古画修复算法,目标是对内容受损的古画进行自动化修复. 为了能够较好地从多个尺度来修复古画,采用了多路编码器来学习古画不同尺度的语义特征,通过学习到的宏观、中观、微观的语义特征来对古画进行修复,解决了古画丰富和细腻的纹理修复困难问题. 为了更好地学习古画的全局语义特征,使得修复后的古画整体更加和谐一致,采用了双重注意力模块分别从风格和内容2个方面来学习古画的全局语义特征. 为了验证提出的算法的先进性,制作了一个古画数据集,在该数据集上的实验证明,提出的算法相对于目前最先进的算法而言具有较好的修复质量.

       

      Abstract: Painting is an important form of culture and art. For thousands of years, a large number of paintings have been produced in ancient China. And paintings contain rich cultural, artistic, scientific, and historical values. But due to natural disasters (earthquake) and various reasons such as natural weathering and more and more human economic activities, some paintings are more or less damaged or missing in large pieces, which seriously affects the appreciation, cultural creativity, cultural communication and other activities based on these paintings. Compared with natural images, ancient painting images usually have high self-similarity, obvious style characteristics, rich cultural connotation and delicate texture. Although impressive progress has been made in the inpainting technology of natural images, these methods cannot be directly applied to the inpainting of ancient Chinese paintings. Combined with the characteristics of ancient Chinese paintings, we design the algorithm and model structure and proposes a Chinese ancient painting inpainting algorithm based on a multi-channel encoder and dual attention module. The goal is to automatically repair the damaged ancient paintings. In order to better repair the ancient paintings from multiple scales, we use a multi-channel encoder to learn the semantic features of ancient paintings at different scales and repair ancient paintings through the learned macro, meso, and micro semantic features, which solves the difficult problem of rich and delicate texture repair of ancient paintings. In order to better learn the global semantic features of ancient paintings and conduct the harmony and consistency of the repaired ancient paintings, we use the dual attention module to learn the global semantic features of ancient paintings from two aspects: style and content. In order to verify the advanced nature of the algorithm, an ancient painting data set is produced. Experiments on this dataset prove that the algorithm proposed in this paper has better repair quality than the SOTA algorithms.

       

    /

    返回文章
    返回