高级检索

    Mort:面向实时数据分发和传输优化的依赖性任务卸载框架

    Mort: A Dependent Task Offloading Framework Towards Real-Time Data Distribution and Transmission Optimization

    • 摘要: 在边缘协同计算中,单一设备已无法满足大量复杂任务对系统高计算能力和低时延的需求,通常需要将任务卸载到邻近具有丰富计算存储资源的边缘服务器上,同时,通过发布订阅模式构建统一的通信协议,支撑任务对数据共享和隐私保护的需求. 在发布订阅系统中,任务往往具有依赖性、执行周期性和高频率数据分发等特性,而传统的任务卸载算法主要针对数据单次传输和任务单次执行的场景,无法有效应对发布订阅系统中的任务卸载问题. 因此,设计一个任务卸载及管理框架Mort. 该框架使用基于静态代码分析的任务分解方法解构任务之间的依赖性,支撑任务并行;采用基于非线性整数规划建模和基于分组及资源融合的卸载算法,优化网络数据传输;采用基于协程的调度模型调度卸载后的任务,减少任务调度开销. 大量的仿真实验和真实场景实验表明,Mort的数据传输优化能达到最优解的80%~90%,且引入的系统开销仅约为2%.

       

      Abstract: In edge collaborative computing, a single device can no longer support more and more complicated applications and services. Their tasks are offloaded to the adjacent edge server with rich computing and storage resources to match the various high calculation capabilities and low latency requirements. At the same time, the publish-subscribe system is commonly applied from the communication perspective to build a unified transmission protocol to protect data privacy. In the publish-subscribe system, tasks often execute periodicity, depend on each other and the data is distributed to different clients in high-frequency. However, the traditional task offloading algorithms mainly aim at the single data transmission and single task execution scenario, which cannot effectively handle the offloading characteristics in a publish-subscribe system. Therefore, we propose Mort, a task offloading and management framework. It supports task decomposition using the static program analysis technique, and the task dependencies are extracted and the parallelism is increased. Nonlinear integer programming-based modeling and group-based resource fusion-based offloading algorithms are applied to optimize network data transmission. The coordination process-based scheduling model is used to schedule the offloading tasks with less overhead. Our comprehensive experiments show that Mort’s data transmission optimization can reach 80%-90% of the optimal solution with a low overhead of only 2%.

       

    /

    返回文章
    返回