高级检索

    面向边缘计算的服务解耦与部署策略

    Service Decoupling and Deployment Strategy for Edge Computing

    • 摘要: 在这个万物互联的时代,海量的设备和数据、云和设备之间存在巨大的传输延迟,给开发应用、处理数据、最终提升系统的服务质量带来了多重挑战. 因此,通过在终端设备附近部署计算能力以显著减少传输到云服务器的数据量和服务请求的响应时间的边缘计算结构应运而生. 然而,负载均衡、边缘设备的安全性和移动性依旧是影响边缘计算架构的服务质量的关键点. 为了解决上述问题,提出了一种2阶段的服务质量优化方案以解决移动边缘计算架构下的服务部署问题. 在第1阶段,考虑了服务的解耦和边缘服务器的负载均衡问题,对服务部署问题进行建模,提出了一种集中式服务的实时解耦方案,并且设计了一种静态部署策略;在第2阶段,考虑了边缘设备的移动性,设计了一种设备移动感知的服务动态部署策略,优化了移动边缘计算架构下的服务质量. 在2个数据集上的实验结果表明,所提出的静态部署策略能够使服务请求的响应时间降低36%,所提出的动态部署策略能进一步降低13%的服务响应时间.

       

      Abstract: In the era of the Internet of everything, the huge transmission delays between massive devices and data, clouds and devices have brought multiple challenges to developing applications, processing data, and ultimately improving the quality of service(QoS). As a result, edge computing architectures that significantly reduce the amount of data transferred to cloud servers and the response time of service requests by deploying computing power near end devices have emerged. However, load balancing, security, and mobility of edge devices are still the key points that affect the quality of service of edge computing architectures. In order to solve the above problems, we propose a two-stage QoS optimization scheme to solve the service deployment problem under the mobile edge computing architecture. In the first stage, we consider the decoupling of services and the load balancing of edge servers, model the problem of service deployment, propose a real-time decoupling scheme for centralized services, and design a static deployment strategy; In the second stage, we consider the mobility of edge devices, design a dynamic deployment strategy for device mobility-aware services, and optimize the quality of service under the mobile edge computing architecture. The experimental results on two datasets show that the static deployment strategy proposed in this paper can reduce the response time of service requests by 36%, and the dynamic deployment strategy can further reduce the service response time by 13%.

       

    /

    返回文章
    返回