-
摘要:
Web 3.0数字经济体系以区块链平台为基础设施,围绕加密货币、NFT、数字藏品等数字资产和去中心化金融(DeFi)、游戏金融(GameFi)等去中心化应用(DApp)开展各项社会经济活动. 在公有链和开放联盟链下,作为DApp内核的智能合约可以由任何个人或组织予以部署,并对全体用户可见及可调用. 这种开放性给经济发展带来了新的机遇,同时也蕴含了许多金融风险. 以智能合约为中心分析了Web 3.0数字经济潜在的风险,并从智能合约的编码、功能、应用3个层面总结了风险感知技术的研究现状. 首先介绍了智能合约漏洞检测技术的研究挑战、安全漏洞类型和4类漏洞检测方法;其次分析了常见的智能合约骗局类型,并根据训练数据的不同分类总结了现有的智能合约骗局识别技术;接着介绍了基于区块链交易记录对4种非法交易行为进行检测的技术现状;最后结合对现有工作局限性的分析,展望了未来的研究方向.
Abstract:The Web 3.0 digital economic system takes the blockchain platform as its infrastructure, and revolves around the digital assets such as cryptocurrencies, NFTs, digital collectibles, and decentralized applications (DApps) like decentralized finance (DeFi) and gaming finance (GameFi) to conduct various socio-economic activities. Smart contracts are the core of DApps on the public blockchains and the public permissioned blockchains, such as Ethereum, Solana, EOSIO, Findora, Antchain, ChainMaker, et al. Smart contracts can be deployed by any individual or organization, and are visible and accessible to all blockchain users. This openness brings new opportunities for economic development while also harboring numerous financial risks. We analyze potential risks for Web 3.0 digital economic by focusing on smart contract and summarize the current research on risk perception technology from three aspects: encoding, functionality, and application of smart contracts. We first introduce the research challenges, security vulnerability types, and four categories of vulnerability detection methods in smart contract vulnerability detection technology. Next, we analyze common types of smart contract scams and summarize existing scam recognition techniques based on different classifications of training data. Subsequently, we introduce the current state of technology for detecting four types of illicit transactions behaviors based on blockchain transaction records. Lastly, by analyzing the limitations of existing work, we envision the future research directions.
-
Keywords:
- Web 3.0 /
- blockchain /
- smart contract /
- risk perception technology /
- digital economy
-
-
表 1 各类型漏洞检测方法优缺点对比
Table 1 Comparison of Advantages and Disadvantages of Different Vulnerability Detection Methods
漏洞检测方法 效率 准确率 标注 定义漏洞 可解释性 可迁移性 可靠性 符号执行 低 高 不需要 需要 好 差 低 深度学习 高 低 需要 不需要 差 好 低 形式化规范与验证 高 低 不需要 不需要 好 差 高 混合方法 低 高 需要 需要 好 好 高 表 2 加密货币市场操纵方法总结
Table 2 Summary of Cryptocurrency Market Manipulation Methods
策略 描述 角色/平台 哄抬抛售 协调购买力来推高区块链发行币的价格. 社交媒体 洗牌交易 执行交易来创造人工交易量,形成循环交易,夸大特定资产的价值. 交易所 订单操纵 通过短时间内伪造大量订单来操纵市场对某种货币供需的感知,但这些订单生命期短,或实际并不执行. 交易所 抢先交易 设置更高gas费用抢先完成攻击交易. 区块链 内幕交易 滥用可预测未来交易的内幕信息来制定交易策略. 交易所 分布式拒绝服务攻击 通过反复发送大量的服务请求,试图使一个网站或网络提供的服务失效. 互联网 稳定币发行 大量发行稳定币用于购买某种数字货币,此时该数字货币流通量减少,从而导致其价格上涨. 交易所 -
[1] Shannon V. A more revolutionary Web[EB/OL]. (2006-03-01)[2023-03-21].https://www.nytimes.com/2006/05/23/technology/23iht-web.html
[2] Berners-Lee T, Hendler J, Lassila O. The semantic web[J]. Scientific American, 2001, 284(5): 34−43 doi: 10.1038/scientificamerican0501-34
[3] Maclntyre B, Smith T F. Thoughts on the future of WebXR and the immersive Web[C]//Proc of the 2018 IEEE Int Symp on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). Piscataway, NJ: IEEE, 2018: 338−342
[4] Wood G. Dapps: What Web 3.0 looks like[EB/OL]. (2014-04-17)[2023-03-15].https://gavwood.com/dappsweb3.html
[5] Nakamoto S. Bitcoin: A peer-to-peer electronic cash system[EB/OL].[2023-03-20]. http://www.bitcoin.org/bitcoin.pdf
[6] Buterin V. A next-generation smart contract and decentralized application platform[EB/OL]. (2018-02-08)[2023-03-15].https://ethereum.org/en/whitepaper/
[7] 国家信息中心. BSN 开放联盟链[EB/OL].[2023-03-18]. https://opb.bsnbase.com/main/index The State Information Center. BSN open permissioned blockchain[EB/OL].[2023-03-18]. https://opb.bsnbase.com/main/index (in Chinese) (
[8] 基金会. MakerDAO[EB/OL].[2023-03-18].https://makerdao.com/zh-CN/ The Maker Foundation. MakerDAO[EB/OL].[2023-03-18].https://makerdao.com/zh-CN/ (in Chinese) (Maker
[9] Siegel D. The DAO attack: Understanding what happened[EB/OL]. (2016-06-25)[2023-03-26].https://www.coindesk.com/learn/understanding-the-dao-attac/
[10] Reuters. Bitcoin exchange of Hong Kong suffers from hacker theft and losses of approximately $72 million[EB/OL]. (2016-08-03)[2023-03-26].https://www.reuters.com/article/bitcoin-hacking-updates-0803-idCNKCS10E10I
[11] United States Department of the Treasury. U. S. treasury sanctions notorious virtual currency mixer Tornado. Cash[EB/OL]. (2022-08-08)[2023-03-28].https://home.treasury.gov/news/press-releases/jy0916
[12] United States Securities and Exchange Commission. SEC charges eleven individuals in $300 million crypto pyramid scheme[EB/OL]. (2022-08-01)[2023-03-28].https://www.sec.gov/news/press-release/2022-134
[13] 以太坊基金会. 去中心化应用(DAPPS)[EB/OL].[2023-02-28].https://ethereum.org/zh/dapps/#what-are-dapps The Ethereum Foundation. Decentralized application (DAPPS)[EB/OL].[2023-02-28].https://ethereum.org/zh/dapps/#what-are-dapps (in Chinese) (
[14] Chen Chuan, Zhang Lei, Li Yihao, et al. When digital economy meets web 3.0: Applications and challenges[J]. IEEE Open Journal of the Computer Society, 2022, 3: 233−245 doi: 10.1109/OJCS.2022.3217565
[15] Huang Huawei, Kong Wei, Zhou Sicong, et al. A survey of state-of-the-art on blockchains: Theories, modelings, and tools[J]. ACM Computing Surveys, 2021, 54(2): 1−42
[16] Wu Jiajing, Lin Kaixin, Lin Dan, et al. Financial crimes in Web3-empowered metaverse: Taxonomy, countermeasures, and opportunities[J]. IEEE Open Journal of the Computer Society, 2023, 4: 37−49 doi: 10.1109/OJCS.2023.3245801
[17] 陈伟利,郑子彬. 区块链数据分析:现状、趋势与挑战[J]. 计算机研究与发展,2018,55(9):1853−1870 doi: 10.7544/issn1000-1239.2018.20180127 Chen Weili, Zheng Zibin. Blockchain data analysis: A review of status, trends and challenges[J]. Journal of Computer Research and Development, 2018, 55(9): 1853−1870 (in Chinese) doi: 10.7544/issn1000-1239.2018.20180127
[18] 魏松杰,吕伟龙,李莎莎. 区块链公链应用的典型安全问题综述[J]. 软件学报,2022,33(1):324−355 Wei Songjie, Lü Weilong, Li Shasha. Overview on typical security problems in public blockchain applications[J]. Journal of Software, 2022, 33(1): 324−355 (in Chinese)
[19] Tolmach P, Li Yi, Lin Shangwei, et al. A survey of smart contract formal specification and verification[J]. ACM Computing Surveys, 2021, 54(7): 1−38
[20] 钱鹏,刘振广,何钦铭,等. 智能合约安全漏洞检测技术研究综述[J]. 软件学报,2022,33(8):3059−3085 Qian Peng, Liu Zhenguang, He Qinming, et al. Smart contract vulnerability detection technique: A survey[J]. Journal of Software, 2022, 33(8): 3059−3085 (in Chinese)
[21] Cui Siwei, Zhao Gang, Gao Yifei, et al. VRust: Automated vulnerability detection for Solana smart contracts[C]//Proc of the 2022 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2022: 639−652
[22] He Ningyu, Zhang Ruiyi, Wang Haoyu, et al. EOSAFE: Security analysis of EOSIO smart contracts[C]//Proc of the 30th USENIX Security Symp. Berkeley, CA: USENIX Association, 2021: 1271−1288
[23] Luu L, Chu D H, Olickel H, et al. Making smart contracts smarter[C]//Proc of the 2016 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2016: 254−269
[24] Krupp J, Rossow C. TEEHER: Gnawing at Ethereum to automatically exploit smart contracts[C]//Proc of the 27th USENIX Security Symp (USENIX Security 18). Berkeley, CA: USENIX Association, 2018: 1317−1333
[25] Bose P, Das D, Chen Yanju, et al. Sailfish: Vetting smart contract state-inconsistency bugs in seconds[C]//Proc of the 2022 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2022: 161−178
[26] Ye Jiaming, Ma Mingliang, Lin Yun, et al. Vulpedia: Detecting vulnerable Ethereum smart contracts via abstracted vulnerability signatures[J]. Journal of Systems and Software, 2022, 192: 111410 doi: 10.1016/j.jss.2022.111410
[27] Liao Zeqin, Zheng Zibin, Chen Xiao, et al. SmartDagger: A bytecode-based static analysis approach for detecting cross-contract vulnerability[C]//Proc of the 31st ACM SIGSOFT Int Symp on Software Testing and Analysis. New York: ACM, 2022: 752−764
[28] Zheng Peilin, Zheng Zibin, Luo Xiapu. Park: Accelerating smart contract vulnerability detection via parallel-fork symbolic execution[C]//Proc of the 31st ACM SIGSOFT Int Symp on Software Testing and Analysis. New York: ACM, 2022: 740−751
[29] Rodler M, Li Wenting, Karame G O, et al. EVMPatch: Timely and automated patching of Ethereum smart contracts[C]//Proc of the 30th USENIX Security Symp. Berkeley, CA: USENIX Association, 2021: 1289−1306
[30] Nguyen T D, Pham L H, Sun Jun. SGUARD: Towards fixing vulnerable smart contracts automatically[C]//Proc of the 2021 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2021: 1215−1229
[31] Rossini M, Zichichi M, Ferretti S. Smart contracts vulnerability classification through deep learning[C]//Proc of the 20th ACM Conf on Embedded Networked Sensor Systems. New York: ACM, 2022: 1229−1230
[32] Gao Zhipeng, Jayasundara V, Jiang Lingxiao, et al. Smartembed: A tool for clone and bug detection in smart contracts through structural code embedding[C]//Proc of the 2019 IEEE Int Conf on Software Maintenance and Evolution (ICSME). Piscataway, NJ: IEEE, 2019: 394−397
[33] Qian Peng, Liu Zhenguang, He Qinming, et al. Towards automated reentrancy detection for smart contracts based on sequential models[J]. IEEE Access, 2020, 8: 19685−19695 doi: 10.1109/ACCESS.2020.2969429
[34] Huang Jianjun, Han Songming, You Wei, et al. Hunting vulnerable smart contracts via graph embedding based bytecode matching[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2144−2156 doi: 10.1109/TIFS.2021.3050051
[35] Nguyen H H, Nguyen N M, Doan H P, et al. MANDO-GURU: Vulnerability detection for smart contract source code by heterogeneous graph embeddings[C]//Proc of the 30th ACM Joint European Software Engineering Conf and Symp on the Foundations of Software Engineering. New York: ACM, 2022: 1736−1740
[36] Zhuang Yuan, Liu Zhenguang, Qian Peng, et al. Smart contract vulnerability detection using graph neural network[C]//Proc of the 29th Int Joint Conf on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann, 2020: 3283−3290
[37] Wu Hongjun, Zhang Zhuo, Wang Shangwen, et al. Peculiar: Smart contract vulnerability detection based on crucial data flow graph and pre-training techniques[C]//Proc of the 32nd IEEE Int Symp on Software Reliability Engineering (ISSRE). Piscataway, NJ: IEEE, 2021: 378−389
[38] Zhang Lejun, Wang Jinlong, Wang Weizheng, et al. Smart contract vulnerability detection combined with multi-objective detection[J]. Computer Networks, 2022, 217: 109289 doi: 10.1016/j.comnet.2022.109289
[39] Cai Jie, Li Bin, Zhang Jiale, et al. Combine sliced joint graph with graph neural networks for smart contract vulnerability detection[J]. Journal of Systems and Software, 2023, 195: 111550 doi: 10.1016/j.jss.2022.111550
[40] Jiao Jiao, Kan Shuanglong, Lin Shangwei, et al. Semantic understanding of smart contracts: Executable operational semantics of solidity[C]//Proc of the 2020 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2020: 1695−1712
[41] Permenev A, Dimitrov D, Tsankov P, et al. VerX: Safety verification of smart contracts[C]//Proc of the 2020 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2020: 1661−1677
[42] Schneidewind C, Grishchenko I, Scherer M, et al. eThor: Practical and provably sound static analysis of Ethereum smart contracts[C]//Proc of the 2020 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2020: 621−640
[43] Frank J, Aschermann C, Holz T. ETHBMC: A bounded model checker for smart contracts[C]//Proc of the 29th USENIX Conf on Security Symp. Berkeley, CA: USENIX Association, 2020: 2757−2774
[44] So S, Lee M, Park J, et al. VeriSmart: A highly precise safety verifier for Ethereum smart contracts[C]//Proc of the 2020 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2020: 1678−1694
[45] Samreen N F, Alalfi M H. SmartScan: An approach to detect denial of service vulnerability in Ethereum smart contracts[C]//Proc of the 4th IEEE/ACM Int Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB). Piscataway, NJ: IEEE, 2021: 17−26
[46] Liu Zhenguang, Qian Peng, Qang Xiang, et al. Smart contract vulnerability detection: From pure neural network to interpretable graph feature and expert pattern fusion[C]//Proc of the 30th Int Joint Conf on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann, 2021: 2751−2759
[47] Liu Zhenguang, Qian Peng, Wang Xiaoyang, et al. Combining graph neural networks with expert knowledge for smart contract vulnerability detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(2): 1296−1310
[48] Tang D, Qin B, Feng X, et al. Effective LSTMs for target-dependent sentiment classification[J]. arXiv preprint, arXiv: 1512.01100, 2015
[49] Tian Gang, Wang Qibo, Zhao Yi, et al. Smart contract classification with a Bi-LSTM based approach[J]. IEEE Access, 2020, 8: 43806−43816 doi: 10.1109/ACCESS.2020.2977362
[50] Chen Yizhou, Dai Heng, Yu Xiao, et al. Improving Ponzi scheme contract detection using multi-channel TextCNN and transformer[J]. Sensors, 2021, 21(19): 6417 doi: 10.3390/s21196417
[51] He Xuezhi, Yang Tan, Chen Liping. CTRF: Ethereum-based Ponzi contract identification[EB/OL].[2023-03-28].https://www.hindawi.com/journals/scn/2022/1554752/
[52] Ishimaki M, Omote K. Ethereum contract honeypot risk analysis[C]//Proc of the 5th Int Conf on Frontiers in Cyber Security (FCS). Berlin: Springer, 2022: 226−240
[53] Hu Teng, Liu Xiaolei, Chen Ting, et al. Transaction-based classification and detection approach for Ethereum smart contract[J]. Information Processing & Management, 2021, 58(2): 102462
[54] 黄步添,刘琦,何钦铭,等. 基于语义嵌入模型与交易信息的智能合约自动分类系统[J]. 自动化学报,2017,43(9):1532−1543 Huang Butian, Liu Qi, He Qinming, et al. Towards automatic smart-contract codes classification by means of word embedding model and transaction information[J]. Acta Automatica Sinica, 2017, 43(9): 1532−1543 (in Chinese)
[55] Jin Chengxiang, Zhou Jiajun, Jin Jie, et al. Time-aware metapath feature augmentation for Ponzi detection in Ethereum[J]. arXiv preprint, arXiv: 2210.16863, 2022
[56] Camino R, Torres C F, Baden M, et al. A data science approach for honeypot detection in Ethereum[J]. arXiv preprint, arXiv: 1910.01449, 2019
[57] Fan Shuhui, Fu Shaojing, Luo Yuchuan, et al. Smart contract scams detection with topological data analysis on account interaction[C]//Proc of the 31st ACM Int Conf on Information & Knowledge Management. New York: ACM, 2022: 468−477
[58] Wang Lei, Cheng Hao, Zheng Zibin, et al. Ponzi scheme detection via oversampling-based long short-term memory for smart contracts[J]. Knowledge-Based Systems, 2021, 228: 107312 doi: 10.1016/j.knosys.2021.107312
[59] Jin Jie, Zhou Jiajun, Jin Chengxiang, et al. Dual-channel early warning framework for Ethereum Ponzi schemes[C]//Proc of the 7th Big Data and Social Computing China National Conf. Berlin: Springer, 2022: 260−274
[60] Bartoletti M, Carta S, Cimoli T, et al. Dissecting Ponzi schemes on Ethereum: Identification, analysis, and impact[J]. Future Generation Computer Systems, 2020, 102: 259−277 doi: 10.1016/j.future.2019.08.014
[61] Zheng Zibing, Chen Weili, Zhong Zhijie, et al. Securing the Ethereum from smart Ponzi schemes: Identification using static features[EB/OL].[2023-03-18]. https://dl.acm.org/doi/abs/10.1145/3571847
[62] Lou Yincheng, Zhang Yanmei, Chen Shiping. Ponzi contracts detection based on improved convolutional neural network[C]//Proc of the 2020 IEEE Int Conf on Services Computing (SCC). Piscataway, NJ: IEEE, 2020: 353−360
[63] Hara K, Takahashi T, Ishimaki M, et al. Machine-learning approach using solidity bytecode for smart-contract honeypot detection in the Ethereum[C]//Proc of the 21st IEEE Int Conf on Software Quality, Reliability and Security Companion (QRS-C). Piscataway, NJ: IEEE, 2021: 652−659
[64] Shi Chaochen, Xiang Yong, Yu Jiangshan, et al. A bytecode-based approach for smart contract classification[C]//Proc of the 2022 IEEE Int Conf on Software Analysis, Evolution and Reengineering (SANER). Piscataway, NJ: IEEE, 2022: 1046−1054
[65] 林丹,林凯欣,吴嘉婧,等. 基于字节码的以太坊智能合约分类方法[J]. 网络与信息安全学报,2022,8(5):111−120 doi: 10.11959/j.issn.2096-109x.2022046 Lin Dan, Lin Kaixin, Wu Jiajing, et al. Bytecode-based approach for Ethereum smart contract classification[J]. Chinese Journal of Network and Information Security, 2022, 8(5): 111−120 (in Chinese) doi: 10.11959/j.issn.2096-109x.2022046
[66] Hu Huiwen, Bai Qianlan, Xu Yuedong. SCSGuard: Deep scam detection for Ethereum smart contracts[EB/OL].[2023-03-28].https://ieeexplore.ieee.org/abstract/document/9798296
[67] Peng Jianxi, Xiao Guijiao. Detection of smart Ponzi schemes using opcode[C]//Proc of the 2nd Blockchain and Trustworthy Systems Int Conf. Berlin: Springer, 2020: 192−204
[68] Chen Weili, Zheng Zibin, Cui Jiahui, et al. Detecting Ponzi schemes on ethereum: Towards healthier blockchain technology[C]//Proc of the 2018 World Wide Web Conf. New York: ACM, 2018: 1409−1418
[69] Zhang Yanmei, Yu Wenqiang, Li Ziyu, et al. Detecting Ethereum Ponzi schemes based on improved LightGBM algorithm[J]. IEEE Transactions on Computational Social Systems, 2021, 9(2): 624−637
[70] Torres C F, Steichen M, State R. The art of the scam: Demystifying honeypots in Ethereum smart contracts[J]. arXiv preprint, arXiv: 1902.06976, 2019
[71] Nalinipriya G, Balajee M, Priya C, et al. Ransomware recognition in blockchain network using water moth flame optimization-aware DRNN[J]. Concurrency and Computation: Practice and Experience, 2022, 34(19): e7047 doi: 10.1002/cpe.7047
[72] Sun Weisong, Xu Guangyao, Yang Zijiang, et al. Early detection of smart Ponzi scheme contracts based on behavior forest similarity[C]//Proc of the 20th IEEE Int Conf on Software Quality, Reliability and Security (QRS). Piscataway, NJ: IEEE, 2020: 297−309
[73] Chen Weimin, Li Xinran, Sui Yuting, et al. SADPonzi: Detecting and characterizing Ponzi schemes in Ethereum smart contracts[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2021, 5(2): 1−30
[74] Sun Xun, Lin Xingwei, Liao Zhou. An ABI-based classification approach for Ethereum smart contracts[C]//Proc of the 2021 IEEE Int Conf on Dependable, Autonomic and Secure Computing, Int Conf on Pervasive Intelligence and Computing, Int Conf on Cloud and Big Data Computing, Int Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). Piscataway, NJ: IEEE, 2021: 99−104
[75] Fan Shuhui, Fu Shaojing, Xu Haoran, et al. Expose your mask: Smart Ponzi schemes detection on blockchain[EB/OL].[2023-03-24].https://ieeexplore.ieee.org/abstract/document/9207143
[76] Fan Shuhui, Fu Shaojing, Xu Haoran, et al. Al-SPSD: Anti-leakage smart Ponzi schemes detection in blockchain[J]. Information Processing & Management, 2021, 58(4): 102587
[77] Möser M, Böhme R, Breuker D. An inquiry into money laundering tools in the bitcoin ecosystem[C]//Proc of the 2013 Symp on Electronic Crime Research (2013 APWG eCrime). Piscataway, NJ: IEEE, 2013: 1−14
[78] Wu Jiajing, Liu Jieli, Chen Weili, et al. Detecting mixing services via mining bitcoin transaction network with hybrid motifs[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52(4): 2237−2249
[79] Meiklejohn S, Pomarole M, Jordan G, et al. A fistful of bitcoins: Characterizing payments among men with no names[C]//Proc of the 2013 Conf on Internet Measurement. New York: ACM, 2013: 127−140
[80] Ketenci U G, Kurt T, Önal S, et al. A time-frequency based suspicious activity detection for anti-money laundering[J]. IEEE Access, 2021, 9: 59957−59967 doi: 10.1109/ACCESS.2021.3072114
[81] Lorenz J, Silva M I, Aparício D, et al. Machine learning methods to detect money laundering in the bitcoin blockchain in the presence of label scarcity[C]//Proc of the 1st ACM Int Conf on AI in Finance. New York: ACM, 2020: 23: 1−23: 8
[82] Alarab I, Prakoonwit S. Graph-based LSTM for anti-money laundering: Experimenting temporal graph convolutional network with bitcoin data[J]. Neural Processing Letters, 2022, 55(1): 689−707
[83] Chen Weili, Guo Xiongfen, Chen Zhiguang, et al. Phishing scam detection on Ethereum: Towards financial security for blockchain ecosystem[C]//Proc of the 29th Int Joint Conf on Artificial Intelligence (IJCAI). San Francisco: Margan Kaufmann, 2020: 4506−4512
[84] Wu Jiajing, Yuan Qi, Lin Dan, et al. Who are the phishers? Phishing scam detection on Ethereum via network embedding[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 52(2): 1156−1166
[85] Kabla A H H, Anbar M, Manickam S, et al. Eth-PSD: A machine learning-based phishing scam detection approach in Ethereum[J]. IEEE Access, 2022, 10: 118043−118057 doi: 10.1109/ACCESS.2022.3220780
[86] Wen Tingke, Xiao Yuanxing, Wang Anqi, et al. A novel hybrid feature fusion model for detecting phishing scam on Ethereum using deep neural network[J]. Expert Systems with Applications, Amsterdam: Elsevier, 2023, 211: 118463
[87] Ron D, Shamir A. Quantitative analysis of the full bitcoin transaction graph[C]//Proc of the 17th Financial Cryptography and Data Security Int Conf (FC 2013). Berlin: Springer, 2013: 6−24
[88] Zhao Lin, Sen G S, Khan A, et al. Temporal analysis of the entire Ethereum blockchain network[C]//Proc of the 2021 Web Conf. New York: ACM, 2021: 2258−2269
[89] Chen Liang, Peng Jiaying, Liu Yang, et al. Phishing scams detection in Ethereum transaction network[J]. ACM Transactions on Internet Technology, 2020, 21(1): 1−16
[90] Li Sijia, Gou Gaopeng, Liu Chang, et al. TTAGN: Temporal transaction aggregation graph network for ethereum phishing scams detection[C]//Proc of the 2022 ACM Web Conf. New York: ACM, 2022: 661−669
[91] Fu Bingxue, Yu Xing, Feng Tao. CT-GCN: A phishing identification model for blockchain cryptocurrency transactions[J]. International Journal of Information Security, 2022, 21(6): 1223−1232 doi: 10.1007/s10207-022-00606-6
[92] Duan Xincheng, Yan Biwei, Dong Anming, et al. Phishing frauds detection based on graph neural network on Ethereum[C]//Proc of the 17th Int Conf on Wireless Algorithms, Systems, and Applications (WASA 2022). Berlin: Springer, 2022: 351−363
[93] Eigelshoven F, Ullrich A, Parry D A. Cryptocurrency market manipulation: A systematic literature review[EB/OL].[2023-03-28].https://aisel.aisnet.org/icis2021/fintech/fintech/1/
[94] Chen Weili, Wu Jun, Zheng Zibin, et al. Market manipulation of bitcoin: Evidence from mining the Mt. Gox transaction network[C]//Proc of the 2019 IEEE INFOCOM Conf on Computer Communications. Piscataway, NJ: IEEE, 2019: 964−972
[95] Pereira D M, Couto R S. Using degree centrality to identify market manipulation on bitcoin[C]//Proc of the 2021 Data Privacy Management, Cryptocurrencies and Blockchain Technology: ESORICS Int Workshops (DPM 2021 and CBT 2021). Berlin: Springer, 2022: 208−223
[96] Huang D Y, Aliapoulios M M, Li V G, et al. Tracking ransomware end-to-end[C]//Proc of the 2018 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2018: 618−631
[97] Akcora C G, Li Yitao, Gel Y R, et al. Bitcoinheist: Topological data analysis for ransomware detection on the bitcoin blockchain[J]. arXiv preprint, arXiv: 1906.07852, 2019
[98] Raheem A, Raheem R, Chen T M, et al. Estimation of ransomware payments in bitcoin ecosystem[C]//Proc of the 2021 IEEE Int Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). Piscataway, NJ: IEEE, 2021: 1667−1674
[99] Han Weili, Chen Dingjie, Pang Jun, et al. Temporal networks based industry identification for bitcoin users[C]//Proc of the 16th Int Conf on Wireless Algorithms, Systems, and Applications (WASA 2021). Berlin: Springer, 2021: 108−120
[100] Wang Kai, Pang Jun, Chen Dingjie, et al. A large-scale empirical analysis of ransomware activities in bitcoin[J]. ACM Transactions on the Web, 2021, 16(2): 1−29
-
期刊类型引用(68)
1. 陈泽明,方序鸿,李家叶,汪孟尧,陈爱芳,尹玲. 机器学习模型在城市内涝模拟预报中的应用综述. 人民珠江. 2025(01): 9-22 . 百度学术
2. 邱凯乐. 图信号处理综述. 物联网技术. 2025(05): 111-113 . 百度学术
3. 练培格,李英冰,刘波,冯晓珂. 基于多元时间序列动态图神经网络的交通速度预测. 地球信息科学学报. 2025(03): 636-652 . 百度学术
4. 许明家,孙龙,李爽,鲁程鹏. 基于图神经网络的地下水位动态模拟模型. 水文. 2025(01): 30-36 . 百度学术
5. 胡书林,张华军,邓小涛,王征华. 结合依存图卷积的中文文本相似度计算研究. 计算机工程. 2025(03): 76-85 . 百度学术
6. 朱海,谭文安,郭凯. 基于图卷积的云制造服务编码算法. 河南科技大学学报(自然科学版). 2024(01): 43-50+7 . 百度学术
7. 肖国庆,李雪琪,陈玥丹,唐卓,姜文君,李肯立. 大规模图神经网络研究综述. 计算机学报. 2024(01): 148-171 . 百度学术
8. 林晶晶,冶忠林,赵海兴,李卓然. 超图神经网络综述. 计算机研究与发展. 2024(02): 362-384 . 本站查看
9. 谢楠. 内容个性化推荐优化探索. 数字通信世界. 2024(01): 70-72 . 百度学术
10. 柳德云,李莹,周震,吉根林. 基于时空依赖关系和特征融合的弱监督视频异常检测. 数据采集与处理. 2024(01): 204-214 . 百度学术
11. 李挺,金福生,李荣华,王国仁,段焕中,路彦雄. Light-HGNN:用于圈层内容推荐的轻量同质超图神经网络. 计算机研究与发展. 2024(04): 877-888 . 本站查看
12. 杨洁祎 ,董一鸿 ,钱江波 . 基于图神经网络的小样本学习方法研究进展. 计算机研究与发展. 2024(04): 856-876 . 本站查看
13. 胡昊,孙爽,马鑫,李擎,徐鹏. 基于图注意力网络的城市内涝积水预测与研究. 人民黄河. 2024(04): 43-48 . 百度学术
14. 龙志,陈湘州. 基于图注意力LSTM深度学习的季度GDP预测应用. 湖南工程学院学报(社会科学版). 2024(01): 54-64+118 . 百度学术
15. 张陶,廖彬,于炯,李敏,孙瑞娜. 图神经网络节点分类任务基准测试及分析. 计算机科学. 2024(04): 132-150 . 百度学术
16. 刘润雨,贾路楠. 基于分班图神经网络的度不平衡节点分类. 信息技术与信息化. 2024(04): 114-117 . 百度学术
17. 袁立宁,蒋萍,莫嘉颖,刘钊. 基于二阶图卷积自编码器的图表示学习. 计算机工程与应用. 2024(10): 180-187 . 百度学术
18. 侯磊,刘金环,于旭,杜军威. 图神经网络研究综述. 计算机科学. 2024(06): 282-298 . 百度学术
19. 楚小茜,张建辉,张德升,苏珲. 基于改进GraphSAGE算法的浏览器指纹追踪. 计算机科学. 2024(06): 409-415 . 百度学术
20. 刘振威,黄影平,梁振明,杨静怡. 基于点云图卷积神经网络的3D目标检测. 上海理工大学学报. 2024(03): 320-330 . 百度学术
21. 张强,彭骨,薛陈斌. 基于改进图注意力网络的油井产量预测模型. 吉林大学学报(理学版). 2024(04): 933-942 . 百度学术
22. 李平,宋舒寒,张园,曹华伟,叶笑春,唐志敏. HSEGRL:一种分层可自解释的图表示学习模型. 计算机研究与发展. 2024(08): 1993-2007 . 本站查看
23. 焦鹏飞,陈舒欣,郭翾,何东晓,刘栋. 图神经常微分方程综述. 计算机研究与发展. 2024(08): 2045-2066 . 本站查看
24. 王长刚,王先伟,曹宇,李扬,吕琪,张耀心. 基于改进图注意力网络的电力系统脆弱性关键环节辨识. 电力系统保护与控制. 2024(15): 36-45 . 百度学术
25. 李航程,钟勇. 基于多特征驱动图注意卷积网络的关系抽取. 计算机应用. 2024(S1): 24-28 . 百度学术
26. 熊辛,涂志炜,唐韬,闵仕琦,冯雨欣,汤涛,叶海涛. 复杂场景下人体跌倒行为监测模型构建的研究. 中国数字医学. 2024(09): 91-96 . 百度学术
27. 李鑫,陆伟,马召祎,朱攀,康彬. 基于图注意力和改进Transformer的节点分类方法. 电子学报. 2024(08): 2799-2810 . 百度学术
28. 冯拓宇,刘佳宁,曹子奇,郭静,杨云祥. 社区发现方法研究综述. 中国电子科学研究院学报. 2024(06): 487-498+503 . 百度学术
29. 贺鸣,郭熹,秦守浩,张珂珂. 一种图智能应用开发平台及电信运营商应用实践. 邮电设计技术. 2024(10): 73-77 . 百度学术
30. 李鹏辉,翟正利,冯舒. 针对图神经网络的单节点扰动攻击. 计算机与数字工程. 2024(10): 3003-3008 . 百度学术
31. 孙秀娟,孙福振,李鹏程,王澳飞,王绍卿. 融合掩码自编码器的自适应增强序列推荐. 计算机科学与探索. 2024(12): 3324-3334 . 百度学术
32. 庞俊,程俊澳,林晓丽,王蒙湘. 基于动态超图小波神经网络的半监督超图节点分类. 计算机应用研究. 2024(12): 3735-3741 . 百度学术
33. 周宇,肖健梅,王锡淮. 基于GCN和HGP-SL的电力系统暂态稳定评估. 电气工程学报. 2024(04): 246-254 . 百度学术
34. 张蕾,钱峰,赵姝,陈洁,杨雪洁,张燕平. 基于卷积图神经网络的多粒度表示学习框架. 南京大学学报(自然科学). 2023(01): 43-54 . 百度学术
35. 李洁莹,马佳瑛. 英语翻译机器人翻译错误自动检测系统研究. 自动化与仪器仪表. 2023(02): 242-246 . 百度学术
36. 蒋玉英,陈心雨,李广明,王飞,葛宏义. 图神经网络及其在图像处理领域的研究进展. 计算机工程与应用. 2023(07): 15-30 . 百度学术
37. 陈东洋,郭进利. 基于图注意力的高阶网络节点分类方法. 计算机应用研究. 2023(04): 1095-1100+1136 . 百度学术
38. 韩冰,张鑫云,任爽. 基于三维点云的卷积运算综述. 计算机研究与发展. 2023(04): 873-902 . 本站查看
39. 马东岭,吴鼎辉,陈家阁,姚国标,毛力波. 基于增强图注意力网络的高光谱影像分类方法. 山东建筑大学学报. 2023(02): 97-104 . 百度学术
40. 尹拓凯,岳文静,陈志. 面向拜占庭攻击的认知用户分类. 计算机技术与发展. 2023(04): 102-107 . 百度学术
41. 安波. 结构信息增强的文献分类方法研究. 农业图书情报学报. 2023(03): 15-24 . 百度学术
42. 代祖华,刘园园,狄世龙. 语义增强的图神经网络方面级文本情感分析. 计算机工程. 2023(06): 71-80 . 百度学术
43. 袁满,褚润夫,袁靖舒,陈萍. 融合上下文信息的图神经网络推荐模型研究. 吉林大学学报(信息科学版). 2023(04): 693-700 . 百度学术
44. 刘佰阳,郑宇,魏琳,刘梅,金龙. 面向模型未知的冗余机器人运动规划方案. 兰州大学学报(自然科学版). 2023(04): 506-511 . 百度学术
45. 梁龙跃,王浩竹. 基于图卷积神经网络的个人信用风险预测. 计算机工程与应用. 2023(17): 275-285 . 百度学术
46. 陈淑娴. 基于知识图谱与图神经网络下无线业务预测手段优化. 软件. 2023(07): 83-85 . 百度学术
47. 马华,姜伟,陈明,钟世杰. 基于图滤波器的符号属性图链路关系预测算法. 计算机技术与发展. 2023(09): 126-132 . 百度学术
48. 柳博文,刘星. 多尺度卷积神经网络模型优化在矿物识别中的应用. 矿物岩石. 2023(03): 10-19 . 百度学术
49. 田春生,陈雷,王源,王硕,周婧,王卓立,庞永江,杜忠. 基于图神经网络的电子设计自动化技术研究进展. 电子与信息学报. 2023(09): 3069-3082 . 百度学术
50. 张华辉,邱晓莹,徐航. 文本情感分类方法研究综述. 延边大学学报(自然科学版). 2023(03): 275-282 . 百度学术
51. 谷振宇,陈聪,郑家佳,孙棣华. 考虑时空相似性的动态图卷积神经网络交通流预测. 控制与决策. 2023(12): 3399-3408 . 百度学术
52. 王松,骆莹,刘新民. 基于文本语义与关联网络双链路融合的用户生成内容价值早期识别研究. 数据分析与知识发现. 2023(11): 101-113 . 百度学术
53. 曹汉童,陈璟. 融合Doc2vec与GCN的多类型蛋白质相互作用预测方法. 智能系统学报. 2023(06): 1165-1172 . 百度学术
54. 丁红发,傅培旺,彭长根,龙士工,吴宁博. 混洗差分隐私保护的度分布直方图发布算法. 西安电子科技大学学报. 2023(06): 219-236 . 百度学术
55. 马汉达,梁文德. 基于左归一化图卷积网络的推荐模型. 计算机应用. 2023(S2): 111-116 . 百度学术
56. 闫明路,连航宇,朱丹青,程平. 图计算在反洗钱领域的应用. 金融会计. 2023(10): 65-72 . 百度学术
57. 刘俊奇. 联合编码属性图聚类算法研究. 信息记录材料. 2022(04): 176-178 . 百度学术
58. 熊晗. 图神经网络的开发与应用研究. 电视技术. 2022(04): 142-145 . 百度学术
59. 杜雨晅,王巍,张闯,郑小丽,苏嘉涛,王杨洋. 基于自适应图卷积注意力神经协同推荐算法. 计算机应用研究. 2022(06): 1760-1766 . 百度学术
60. 任嘉睿,张海燕,朱梦涵,马波. 基于元图卷积的异质网络嵌入学习算法. 计算机研究与发展. 2022(08): 1683-1693 . 本站查看
61. 徐上上,孙福振,王绍卿,董家玮,吴田慧. 基于图神经网络的异构信任推荐算法. 计算机工程. 2022(09): 89-95+104 . 百度学术
62. 张博,宋淑彩,赵一航. 基于GCN的节点分类研究. 河北建筑工程学院学报. 2022(02): 196-200 . 百度学术
63. 卢锦玲,周阳,颜禄涵,张艺萱. 基于残差时空图神经网络的电力系统暂态稳定评估. 电力科学与工程. 2022(09): 54-64 . 百度学术
64. 罗袆沅,蒋亚楠,许强,廖露,燕翱翔,刘陈伟. 基于深度学习的滑坡位移时空预测. 测绘学报. 2022(10): 2160-2170 . 百度学术
65. 邢小雷,赵超,郑江文,温可欣. 图神经网络预训练综述. 小型微型计算机系统. 2022(12): 2487-2498 . 百度学术
66. 闫如雪,余泽霖,刘泽宇. 基于高效层级学习图卷积网络的高光谱图像分类. 电脑与信息技术. 2022(06): 15-17+50 . 百度学术
67. 邹长宽,田小平,张晓燕,张雨晴,杜磊. 基于GraphSage节点度重要性聚合的网络节点分类研究. 科学技术与工程. 2022(32): 14306-14312 . 百度学术
68. 王宏朝,李魏琦,郭耀华,刘瀛,焦秀秀. 基于安全监测公共服务平台的企业供应链安全风险预控方法研究. 物流科技. 2022(20): 28-32 . 百度学术
其他类型引用(305)