高级检索

    基于人工智能的物联网恶意代码检测综述

    Survey of Artificial Intelligence Based IoT Malware Detection

    • 摘要: 近年来,随着物联网(Internet of things, IoT)设备的大规模部署,针对物联网设备的恶意代码也不断出现,物联网安全面临来自恶意代码的巨大威胁,亟需对物联网恶意代码检测技术进行综合研究. 随着人工智能(artificial intelligence, AI)在计算机视觉和自然语言处理等领域取得了举世瞩目的成就,物联网安全领域也出现了许多基于人工智能的恶意代码检测工作. 通过跟进相关研究成果,从物联网环境和设备的特性出发,提出了基于该领域研究主要动机的分类方法,从面向物联网设备限制缓解的恶意代码检测和面向性能提升的物联网恶意代码检测2方面分析该领域的研究发展现状. 该分类方法涵盖了物联网恶意代码检测的相关研究,充分体现了物联网设备独有的特性以及当前该领域研究存在的不足. 最后通过总结现有研究,深入讨论了目前基于人工智能的恶意代码检测研究中存在的问题,为该领域未来的研究提出了结合大模型实现物联网恶意代码检测,提高检测模型安全性以及结合零信任架构3个可能的发展方向.

       

      Abstract: In recent years, with the large-scale deployment of Internet of things (IoT) devices, there has been a growing emergence of malicious code targeting IoT devices. IoT security is facing significant threats from malicious code, necessitating comprehensive research on IoT malware detection techniques. Following the remarkable achievements of artificial intelligence (AI) in fields such as computer vision (CV) and natural language processing (NLP), the IoT security field has witnessed numerous efforts in AI-based malware detection as well. By reviewing relevant research findings and considering the characteristics of IoT environments and devices, we propose a classification method for the primary motivations behind research in this field and analyze the research development in IoT malware detection from two perspectives: malware detection techniques towards IoT device limitation mitigation and IoT malware detection techniques towards performance improvement. This classification method encompasses the relevant research in IoT malware detection, which also highlights the unique characteristics of IoT devices and the current limitations of the IoT malware detection field. Finally, by summarizing existing research, we extensively discuss the challenges present in AI-based malware detection and present three possible directions for future research that consists of combining foundation models in IoT malware code detection, improving the safety of detection models, and combining zero trust architecture in this field.

       

    /

    返回文章
    返回