高级检索

    基于判决链的法律判决预测

    Legal Judgment Prediction Based on Chain of Judgment

    • 摘要: 智能司法旨在通过采用各种自然语言处理技术,自动分析法律领域中的文本,已经吸引了自然语言处理社区的极大关注. 作为法律文本挖掘最关键的任务之一,法律判决预测旨在根据法律案件的事实描述,自动预测判决结果(如适用的法律条文、指控和刑罚条款),成为人工智能技术的一个有前景的应用. 然而,现有的法律判决预测方法主要集中在只涉及单一被告的案件上,而忽略了涉及多个被告的案件研究. 在实际的刑事案件中,往往涉及多个被告者,并在他们之间存在着错综复杂的交互关系,现有的单被告法律判决预测技术很难精确区分多被告案件中不同被告的判决结果. 为了加速多被告法律判决预测任务的研究,收集了一个大规模的多被告法律判决预测数据集,其具有以下3个特点:1)数据集是多被告法律判决预测最大的人工标注数据集;2)数据集中的多被告案件需要区分不同被告者的法律判决预测结果;3)数据集中包含了完整的多被告判决链,其中包括犯罪关系、量刑情节、法条、罪名和刑期. 此外,对数据集进行了全面而深入的分析,其中包括法条、罪名、刑期、犯罪关系、量刑情节、文本长度、被告人数的数据分布以及多被告判决结果、基于判决链的判决结果的统计分析. 此外,提出了基于判决链的法律判决预测方法,其中包括判决链生成策略明确生成犯罪事实相关的判决链,判决链对比策略对比正确判决链和易混淆的判决链来进一步提升效果. 实验结果表明,多被告法律判决预测数据集对现有的法律判决预测方法和预训练模型具有挑战性,而基于判决链的法律判决预测方法能显著优于基准方法,显示出判决链在法律判决预测中的关键作用.

       

      Abstract: Legal intelligence aims to analyze texts within the legal domain automatically by employing various natural language processing (NLP) technologies. This field has garnered significant attention from the NLP community. One of the most critical tasks in legal intelligence is Legal Judgment Prediction (LJP). This task seeks to forecast judgment outcomes, such as applicable law articles, charges, and penalties, based on the fact descriptions of legal cases, making it a promising application of artificial intelligence (AI) techniques. However, current LJP methods primarily address cases with a single defendant, neglecting the complexities of cases involving multiple defendants. In real-world criminal cases, multiple defendants are often involved, creating intricate interactions that single-defendant LJP technologies cannot accurately handle. These existing technologies struggle to distinguish judgment outcomes for different defendants in such scenarios. To advance research in LJP tasks involving multiple defendants, this paper presents a large-scale multi-defendant LJP dataset with three key characteristics: 1) It is the largest manually annotated dataset for multi-defendant LJP; 2) It necessitates distinguishing legal judgment predictions for each defendant; 3) It includes comprehensive judgment chains, covering criminal relationships, sentencing contexts, law articles, charges, and penalties. Furthermore, this paper conducts an extensive and detailed analysis of the dataset, examining the distribution of law articles, charges, penalties, criminal relationships, sentencing contexts, text length, and number of defendants. It also provides statistical insights into multi-defendant judgment results and the chain of judgment based outcomes. Additionally, this paper introduces a novel chain of judgment based method, featuring a strategy for generating judgment chains related to the crime facts and a comparison strategy to differentiate correct judgment chains from easily confused ones, enhancing overall effectiveness. Experimental results reveal that the multi-defendant LJP dataset presents a significant challenge to existing LJP methods and pre-trained models. However, the chain of judgment based LJP method significantly surpasses baseline methods, highlighting the crucial role of judgment chains in improving LJP.

       

    /

    返回文章
    返回