高级检索

    DE-NNs:基于动态证据神经网络的脑网络分析算法

    DE-NNs: Brain Network Analysis Algorithm Based on Dynamic Evidence Neural Networks

    • 摘要: 动态功能连接(dynamic functional connections,dFCs)已广泛应用于静息态功能磁共振成像(rs-fMRI)分析,其可以将大脑功能连接视为在多个时间窗上动态变化的过程,探索大脑在不同时间段内的功能连接变化,为脑疾病诊断提供了新的视角和策略. 然而常见的动态脑网络分析方法无法有效利用动态数据之间的潜在关联和时序性,且忽视了各个窗口因为数据质量不一致而导致的不确定性因素. 为此,提出一种基于动态证据神经网络(dynamic evidence neural networks,DE-NNs)的脑网络分析算法. 该算法设计了一种动态脑网络多视图证据获取模块,将动态脑网络的每个时间窗视为一个视图,利用3个不同的卷积滤波器提取动态脑网络每个时间窗的特征图,充分获取动态层面的证据. 为了充分利用动态证据,设计了一种动态证据融合机制,结合证据理论合成规则,针对dFC数据的时序性构造动态信任函数,在分类的决策层对多个窗口产生的证据进行融合,充分考虑不确定性信息,显著提高分类性能. 为验证所提DE-NNs的有效性,在3个精神分裂症数据集上与现有的先进算法进行比较实验,结果表明DE-NNs在3个脑疾病诊断任务上的准确率和F1分数都得到了显著提升.

       

      Abstract: Dynamic Functional Connections (dFCs) can be regarded as a process of dynamic changes in multiple time windows to explore the changes in functional connections of the brain in different time periods. It has been widely used in resting state functional magnetic resonance imaging (rs-fMRI) analysis, providing a new perspective and strategy for the diagnosis of brain diseases. However, the common dynamic brain network analysis methods can not effectively use the potential correlation and timing between dynamic data, and ignore the uncertainty factors caused by the inconsistent data quality of each window. Therefore, this paper proposes a brain network analysis algorithm based on dynamic evidence neural networks (DE-NNs). This algorithm designs a multi-view evidence acquisition module of dynamic brain network, which treats each time window of dynamic brain network as a view. Three different convolution filters are used to extract the feature maps of each time window of the dynamic brain network, and the evidence of the dynamic level is fully obtained. A dynamic evidence fusion mechanism is designed to make full use of dynamic evidence. The dynamic trust function is constructed according to the time sequence of dFC data based on the evidence theory synthesis rules. The evidence generated by multiple windows is fused at the decision level of classification, the uncertainty information is fully considered, and the classification performance is significantly improved. Experiments were conducted on three schizophrenia datasets compared with existing advanced algorithms in order to verify the effectiveness of the proposed DE-NNs. The results showed that the accuracy and F1 scores of DE-NNs on the three brain disease diagnosis tasks were significantly improved.

       

    /

    返回文章
    返回