高级检索

    目标检测模型综述

    A Survey on Object Detection Models

    • 摘要: 目标检测技术是计算机视觉领域的关键组成部分,它在各种实际应用中扮演着至关重要的角色. 目标检测技术经历了几十年的发展,从早期依赖于手工特征提取的方法,到当前深度学习模型的广泛应用. 目前在目标检测领域缺少以深度学习基础模型技术的改进为发展脉络的总结研究,在此背景下,以人工智能领域基础模型的发展过程为线索,围绕不同种类基础模型概述了基于这些模型的不同目标检测模型的发展,同时对这些基于不同基础模型的目标检测算法进行了比较,并分析不同模型的优缺点以及不同模型的改进策略. 同时概述了目标检测技术的评估指标以及不同阶段的技术进步,特别强调了深度学习如何推动目标检测性能的显著提升,讨论了目标检测在处理多样化场景、提高实时性和准确性方面的挑战,并对未来可能的研究方向进行了深度探讨,包括但不限于模型的泛化能力、计算效率以及与更复杂任务的结合,为多个未来研究方向提出了可能的提高策略. 旨在提供一个清晰的技术演进视角,以促进目标检测领域的进一步研究和应用.

       

      Abstract: Object detection technology, as a pivotal component in computer vision, plays a vital role in diverse practical applications. Over decades of evolution, the field has progressed from early methods relying on handcrafted feature extraction to the widespread adoption of deep learning models. Currently, there remains a lack of systematic reviews tracing the developmental trajectory of object detection through improvements in deep learning foundation models. Addressing this gap, this paper organizes the technological evolution around the progression of foundation models in artificial intelligence. We systematically survey detection models built upon various foundation models, compare their strengths and weaknesses, and analyze improvement strategies. The paper also surveys evaluation metrics and technological advancements across different eras, with particular emphasis on how deep learning has driven remarkable performance gains. We discuss persistent challenges in handling diverse scenarios, improving real-time efficiency, and enhancing accuracy. Furthermore, we explore prospective research directions, including model generalization capabilities, computational efficiency, and integration with complex tasks, proposing potential enhancement strategies. This work aims to provide a clear perspective on technological evolution to facilitate further research and applications in object detection.

       

    /

    返回文章
    返回