高级检索

    轻量级多用户可验证隐私保护基因序列分析方案

    Lightweight Multi-User Verifiable Privacy-Preserving Gene Sequence Analysis Scheme

    • 摘要: 随着云计算、大数据等新兴网络服务的蓬勃发展,数据要素在智慧医疗、科学研究等领域中占据重要地位. 基因组测序技术通过对病人基因组序列进行处理来判断病人的患病原因和类别,在多个领域有广泛应用. 由于存储、计算资源受限,本地用户通常需要租用资源丰富但工作在不可信环境下的云服务器来完成复杂的大规模基因组测序处理函数计算任务. 为了保护用户数据隐私及验证计算结果的正确性,国内外现有工作通常的做法是利用公钥全同态加密或安全多方计算技术实现数据隐私保护;利用Yao混淆电路或双线性配对技术实现计算结果的正确性验证. 由于密码原语的计算开销和通信开销巨大,均不适用于基因序列分析系统中存储、计算资源受限的本地用户的客观性能需求. 为了解决上述挑战性问题,提出了一个轻量级多用户可验证隐私保护基因序列分析方案. 首先,构造了一种高效的可验证多密钥同态数据封装机制VMK-HDEM,该方案支持在密文域上对L个不同输入实例的打包计算,用户端 S en_i 公钥加密的使用次数复杂度为O(L),即与其数据集的大小 n_i 无关,大大降低了资源受限的本地用户的计算开销;在可验证性方面,云服务器生成的密文计算结果正确性验证证据大小复杂度为 O(deg_F) (其中 deg_F 代表外包计算函数的阶),与用户数据集大小 n_i 无关. 然后,基于所构造的新型密码原语VMK-HDEM,设计了一个轻量级高效的可验证隐私保护基因序列分析方案LWPPGS,有效保护了用户基因数据集的隐私和基因序列分析结果的隐私,并高效验证其分析结果的正确性. 最后,通过形式化的安全性证明和实验仿真结果表明了所构造方案VMK-HDEM和LWPPGS的安全性和实用性.

       

      Abstract: As the development of the emerging areas of network services such as big data and cloud computing, data element has played an increasingly critical role in the fields of intelligent e-health and scientific research. Gene sequencing technology is widely used in many fields to determine the cause and category of a patient’s disease, by processing the patient’s gene sequence. Due to constrained storage and computing resources, local users often need to rent resource-abundant cloud servers, unfortunately always working in untrusted environments, to fulfill the computationally-intensive task of large-scale gene sequencing function evaluation. To guarantee users’ data privacy and the correctness of computing results, most of the state-of-the-art methods exploit the techniques of public key fully homomorphic encryption and secure multiparty computation to achieve data privacy, and the technique of Yao’s garbled circuit or bilinear paring to achieve correctness verification. Owing to the fact that huge computational overhead and communication overhead are required in the cryptographic primitives mentioned above, they are inappropriate for efficiency needs of the resource-constrained local users in gene sequence analysis. To address this challenging issue, in this paper, a lightweight verifiable privacy-preserving gene sequence analysis scheme in the multi-user setting is proposed. Firstly, we design an efficient verifiable multi-key homomorphic data encapsulation mechanism VMK-HDEM. The proposed VMK-HDEM enables batch outsourced function evaluation on L different input instances over the encrypted domain. The usage time complexity of public key encryption on each user S en_i ’s end is O(L), independent of the dataset size n_i , which significantly decreases the computational cost of local users. For verification, the size of the proof is O(deg_F) where deg_F denotes the degree of the function, independent to the size of user’s dataset n_i . Furthermore, based on our constructed cryptographic primitive VMK-HDEM, a lightweight and efficient verifiable privacy-preserving gene sequence analysis scheme LWPPGS is proposed. It not only can preserve the privacy of both users’ gene datasets and the results of gene sequence analysis, but also efficiently verify the correctness of the outcome. Finally, formal security proof and experimental simulation results show the security and practicability of our proposed VMK-HDEM and LWPPGS.

       

    /

    返回文章
    返回