高级检索

    一种基于无监督学习的智能并行结构网格生成框架

    An Intelligent Parallel Structured Mesh Generation Framework Based on Unsupervised Learning

    • 摘要: 随着高性能计算技术的迅猛发展,科学计算问题的复杂度和计算规模显著提升. 网格生成作为科学计算的前置输入,是高性能计算领域的重要研究方向. 针对大规模网格生成计算效率低、人机交互复杂等难题,发展智能化网格方法已成为研究热点,但如何在网格领域实现高性能计算与人工智能深度融合仍处于研究空白. 针对上述问题,首次提出了一种基于无监督学习的智能并行网格生成框架,支持大规模多块结构网格的高效生成. 框架集成了基于标架场的分块方法、傅里叶柯尔莫哥洛夫-阿诺德网络(Fourier Kolmogorov-Arnold network,傅里叶KAN)模型和网格对齐方法,采用无监督学习模式,自适应学习高质量网格划分规则,有效解决了已有智能方法在处理复杂外形上的局限性. 首次引入并行迁移学习机制,通过迁移不同进程间网格生成任务的相似性特征,显著提升了模型收敛效率. 实验结果表明,所提出的方法在亿维网格生成任务中,相比传统网格生成实现了最高10倍的效率提升. 同时在5个不同质量度量下优于已有智能网格生成方法,达到了最优水平.

       

      Abstract: With the rapid development of high-performance computing technologies, the complexity and scale of scientific computing problems have significantly increased. As a critical input for scientific computing, mesh generation has emerged as an important research direction in high-performance computing. To address challenges such as low computational efficiency and complex human-machine interaction in large-scale mesh generation, intelligent mesh generation methods have attracted increasing attention. However, achieving a deep integration of high-performance computing and artificial intelligence in mesh generation remains a critical challenge. To overcome these challenges, an intelligent parallel mesh generation framework based on unsupervised learning is proposed, enabling the efficient generation of large-scale multi-block structured meshes. The framework integrates a block partitioning method based on cross-fields, a Fourier Kolmogorov-Arnold network model, and a mesh alignment technique. It employs an unsupervised learning approach to adaptively learn high-quality mesh partitioning rules, effectively overcoming the limitations of existing intelligent methods in handling complex geometries. Additionally, a novel parallel transfer learning mechanism is introduced, significantly enhancing model convergence efficiency by transferring task similarity features across different processes. Experimental results demonstrate that the proposed framework achieves up to a 10-fold improvement in efficiency over traditional mesh generation methods for hundred-million-scale tasks. Furthermore, it outperforms existing intelligent mesh generation methods across five different quality metrics, achieving state-of-the-art performance.

       

    /

    返回文章
    返回