高级检索

    基于大语言模型的运动模式感知轨迹表示学习

    Leveraging LLM for Movement Patterns-Aware Trajectory Representation Learning

    • 摘要: 时空轨迹挖掘在基于位置的服务中具有重要作用。轨迹表示学习将复杂的轨迹特征表示为低维表示向量,从而可以服务于多种下游任务,这一过程需要有效地从轨迹中提取时空特征和运动模式。然而,由于模型容量的局限以及轨迹数据集的质量和规模问题,轨迹表示学习面临诸多挑战。大语言模型(LLM)通过在大规模、高质量数据集上的预训练,展现了其在多任务应用上的强大能力。鉴于轨迹与自然语言之间存在一定的相似性,利用LLM开发一种高效的轨迹表示方法成为可能。然而原始LLM并不能直接处理轨迹的独特时空特性,也无法有效提取运动模式。为了解决这些问题,提出了一种利用LLM提取运动模式的轨迹表示学习模型(MPTraj),该模型引入了一种新颖的轨迹语义嵌入器,使得LLM能够处理时空特性并提取运动模式,同时结合基于提示微调的轨迹编码器生成高质量的轨迹表示。此外,设计了两个预训练任务,即下一轨迹点预测和运动模式分类,来提升模型在下游任务中的表现。在两个真实世界数据集和四个代表性任务上的实验结果验证了MPTraj的有效性。

       

      Abstract: Spatial-temporal trajectory mining plays a crucial role in location-based services. Trajectory representation learning transforms complex trajectory features into low-dimensional representation vectors, enabling various downstream tasks. This process requires effectively extracting spatial-temporal features and motion patterns from trajectories. However, trajectory representation learning faces numerous challenges due to limitations in model capacity and issues with the quality and scale of trajectory datasets. Large Language Model (LLM), pre-trained on massive high-quality datasets, have demonstrated remarkable capabilities in multi-task applications. Given the similarities between trajectories and natural language, it is feasible to develop an efficient trajectory representation method leveraging LLM. Nevertheless, vanilla LLMs cannot directly handle the unique spatial-temporal characteristics of trajectories or effectively extract motion patterns. To address these issues, we propose a trajectory representation learning model, MPTraj, which leverages LLMs to extract motion patterns. MPTraj introduces a novel trajectory semantic embedder that enables LLMs to process spatial-temporal features and extract movement patterns effectively. Additionally, a trajectory encoder with prompt tuning is integrated to generate high-quality trajectory representations. Furthermore, two pre-training tasks—next trajectory point prediction and movement pattern classification—are designed to enhance the model's performance on downstream tasks. Experimental results on two real-world datasets and four representative tasks demonstrate the effectiveness of MPTraj.

       

    /

    返回文章
    返回