高级检索

    IFDAE:基于直觉模糊深度自动编码器的特征选择算法

    IFDAE: Intuitionistic Fuzzy Deep Autoencoder Approach for Feature Selection

    • 摘要: 随着大数据技术的持续发展,高维数据集在多个领域的应用愈发广泛,这类数据通常具有维度高、冗余多等特征,易引发模型过拟合并增加计算开销。特征选择有助于从中提取信息量充足的子集,降低维度并提升模型的可解释性。尽管深度神经网络在特征提取方面表现出潜力,但在面对噪声和离群值时,其性能易受影响。为了解决这些挑战,本文介绍了一种新的基于直觉模糊深度自动编码器的特征选择方法(IFDAE)。该方法融合模糊理论与自动编码器架构,旨在通过有效地管理数据中的不确定性与噪声干扰,通过挑选信息量丰富的关键特征实现整个特征空间的重建。该方法首先通过融合隶属度和非隶属度信息,应用直觉模糊权重来处理不确定性,从而抑制噪声和离群值的影响;然后,充分学习深度自动编码器中高度非线性的潜在表示,利用权重迁移将预训练知识迁入目标网络,通过结构化稀疏范数对输入层与首个隐藏层之间的连接权重矩阵施加正则项来获得结构稀疏权值矩阵,从而获得各特征的权值。最后,本文为了验证所提出IFDAE方法的有效性,在12个公共数据集和1个真实世界的精神分裂症数据集上进行实验,结果表明,本文所提方法在重建能力和分类性能方面具有较高的优越性。

       

      Abstract: With the advancement of big data technologies, high-dimensional datasets have seen widespread application, often accompanied by redundancy and noise that lead to overfitting and high computational costs. Feature selection addresses these issues by identifying informative subsets to reduce dimensionality and enhance model interpretability. While deep neural networks excel in feature extraction, they are sensitive to noise and outliers. To overcome this, we propose a novel feature selection approach based on an Intuitionistic Fuzzy Deep Autoencoder (IFDAE). By combining fuzzy theory with a deep autoencoder, IFDAE manages uncertainty by computing intuitionistic fuzzy weights from membership and non-membership information, reducing noise effects. It then learns nonlinear latent features and transfers pre-trained weights to the target network. A structured sparse regularization applied to the input-to-hidden connections yields final feature importance scores. Experiments on 12 public datasets and a real-world schizophrenia dataset confirm IFDAE’s strong reconstruction and classification capabilities.

       

    /

    返回文章
    返回