• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于隐私保护的分类挖掘

葛伟平 汪 卫 周皓峰 施伯乐

葛伟平 汪 卫 周皓峰 施伯乐. 基于隐私保护的分类挖掘[J]. 计算机研究与发展, 2006, 43(1): 39-45.
引用本文: 葛伟平 汪 卫 周皓峰 施伯乐. 基于隐私保护的分类挖掘[J]. 计算机研究与发展, 2006, 43(1): 39-45.
Ge Weiping, Wang Wei, Zhou Haofeng, and Shi Baile. Privacy Preserving Classification Mining[J]. Journal of Computer Research and Development, 2006, 43(1): 39-45.
Citation: Ge Weiping, Wang Wei, Zhou Haofeng, and Shi Baile. Privacy Preserving Classification Mining[J]. Journal of Computer Research and Development, 2006, 43(1): 39-45.

基于隐私保护的分类挖掘

Privacy Preserving Classification Mining

  • 摘要: 基于隐私保护的分类挖掘是近年来数据挖掘领域的热点之一,如何对原始真实数据进行变换,然后在变换后的数据集上构造判定树是研究的重点.基于转移概率矩阵提出了一个新颖的基于隐私保护的分类挖掘算法,可以适用于非字符型数据(布尔类型、分类类型和数字类型)和非均匀分布的原始数据,可以变换标签属性.实验表明该算法在变换后的数据集上构造的分类树具有较高的精度.
    Abstract: Privacy preserving classification mining is one of the fast-growing sub-areas of data mining. How to perturb original data and then build a decision tree based on perturbed data is the key research challenge. By applying transition probability matrix a novel privacy preserving classification mining algorithm is proposed, which suits non-char type data (Boolean, categorical, and numeric type) and non-uniform probability distribution of original data, and can perturb label attribute. Experimental results demonstrate that the decision tree built using this algorithm on perturbed data has a classifying accuracy comparable to that of the decision tree built using un-privacy-preserving algorithm on original data.
计量
  • 文章访问数:  796
  • HTML全文浏览量:  0
  • PDF下载量:  2562
  • 被引次数: 0
出版历程
  • 发布日期:  2006-01-14

目录

    /

    返回文章
    返回