高级检索

    正形置换的枚举与计数

    Enumerations and Counting of Orthomorphic Permutations

    • 摘要: 正形置换在密码算法的设计中占有很重要的地位.研究正形置换的特性、枚举、计数对于密码设计和密码分析均具有重要的意义.正形置换的理论研究已成为国内外密码学编码理论的热点问题.对正形置换的计数和枚举问题进行讨论,利用和阵给出了正形置换的一个枚举方法,利用该方法可以列出所有的n阶正形置换.国内外相关文献中还未见到正形置换的枚举方法.由该枚举法得出了n阶正形置换个数N\-n的上界和下界,这个结果比迄今为止给出的结果都要好,是目前给出的最优上下界.

       

      Abstract: Orthomorphic permutations play important roles in the design of cryptosystem. Studying the properties, enumeration and counting of orthomorphic permutations is heavily significant to design and analysis of cryptosystem. The theory research of orthomorphic permutations has become a focal issue. Counting and enumeration of orthomorphic permutations are discussed in this paper. An enumeration algorithm is given using sum matrix. and all of n-tuples orthomorphic permutations can be listed with this enumeration method. This is the first enumeration method of orthomorphisms. The lower bound and upper bound of the n-tuples orthomorphic permutation's number is given with this enumeration method. They are the best bounds until now.

       

    /

    返回文章
    返回