Abstract:
A well-known drawback in the least squares support vector machine (LS-SVM) is that the sparseness is lost. In this study, an effective pruning algorithm is developed to deal with this problem. To avoid solving the primal set of linear equations, the bottom to the top strategy is adopted in the proposed algorithm. During the training process of the algorithm, the chunking incremental and decremental learning procedures are used alternately. A small support vector set, which can cover most of the information in the training set, can be formed adaptively. Using the support vector set, one can construct the final classifier. In order to test the validation of the proposed algorithm, it has been applied to five benchmarking UCI datasets. In order to show the relationships among the chunking size, the number of support vector machine, the training time, and the testing accuracy, different chunking sizes are tested. The experimental results show that the proposed algorithm can adaptively obtain the sparse solutions without almost losing generalization performance when the chunking size is equal to 2, and also its training speed is much faster than that of the sequential minimal optimization (SMO) algorithm. The proposed algorithm can also be applied to the least squares support vector regression machine as well as LS-SVM classifier.