高级检索

    不确定数据流上的概率反轮廓查询处理

    Probabilistic Reverse Skyline Query Processing on Uncertain Data Streams

    • 摘要: 反轮廓查询在制定有效的市场决策方面具有重要的作用,随着数据流特征和不确定性的表现日益明显,不确定数据流上概率反轮廓查询已经成为一个新的研究课题.为了高效解决不确定数据流上概率反轮廓查询问题,首先,通过对实际应用需求进行分析,提出了不确定数据流上概率反轮廓查询的定义,并根据相关概念,提出了不确定数据流上概率反轮廓查询的索引模型;其次,通过对不确定数据流上概率反轮廓的性质进行深入分析,提出了一种新颖高效的基于R-tree的不确定数据流上概率反轮廓查询算法RT2RS,该算法运用了高效的剪枝策略,避免了大量的无效运算;最后,通过大量的仿真实验对RT2RS性能进行了验证.实验结果表明,RT2RS是解决不确定数据流上概率反轮廓查询的有效方法,大大减少了不确定数据流上概率反轮廓查询的运行时间,能够满足实际应用需求.

       

      Abstract: Reverse skyline query has played an important role in making effective market decisions. Because the flow property and uncertainty of data are more and more apparent, probabilistic reverse skyline query on uncertain data streams has become a new study task. In order to solve the problem of probabilistic reverse skyline query on uncertain data streams efficiently, firstly, through analyzing practical applications’ requirements, the definition of probabilistic reverse skyline on uncertain data streams is proposed; and then according to the relevant concepts, the index model of probabilistic reverse skyline on uncertain data streams is proposed. Next, through the detailed and in-depth analysis of probabilistic reverse skyline’s properties on uncertain data streams, a novel algorithm, probabilistic reverse skyline on uncertain data streams based on R-tree index (RT2RS), is proposed. RT2RS algorithm makes use of an efficient pruning strategy to avoid a large number of invalid operations. Finally, the performance of RT2RS algorithm is verified by a large number of simulation experiments. The experimental results show that RT2RS algorithm is an effective way to solve the problem of probabilistic reverse skyline on uncertain data streams; it could significantly reduce the execution time of probabilistic reverse skyline query on uncertain data streams and meet the requirements of practical applications.

       

    /

    返回文章
    返回