高级检索

    基于多分辨共生矩阵的纹理图像分类

    Texture Classification Based on Multiresolution Co-occurrence Matrix

    • 摘要: 共生矩阵是描述纹理特征的一种常用方法.首先提出一种新的特征提取算法——多分辨共生矩阵.多分辨共生矩阵是通过同时在非下采样小波变换的逼近子带和细节子带上提取共生矩阵来实现的,能够有机整合传统小波的多分辨特性和频谱信息,以及空域灰度共生矩阵的纹理结构信息.其次,分析了多分辨共生矩阵、灰度共生矩阵以及小波能量特征的物理意义,并从相关性出发提出了新的特征选择方法,有效地降低了特征维数.对标准纹理库的分类实验结果表明:多分辨共生特征对纹理具有更好的描述能力,其分类正确率超过小波能量特征、空域灰度共生特征:二者融合以及灰度梯度共生特征的结果;所提出的特征选择方法在降低特征维数的同时,能够保持分类正确率.

       

      Abstract: Gray level co-occurrence matrix (GLCM) is widely used for the description of different textures because of its advantage of representing the texture structure. In order to hold the multiresolution property and spectrum information simultaneously, GLCM is often computed from each wavelet subband, which, however, leads to much higher dimension of feature. To overcome this problem, a new feature extracting algorithm is proposed named multiresolution co-occurrence matrix (MCM), whose feature vector has a comparative low dimension. For the task of dimension reduction, though the MCM is computed from each subband of undecimated wavelet transformation as GLCM does, the parameters for the MCM are well chosen taking into consideration the scale and orientation of wavelet subbands. In addition, the feature dimension of the MCM can be further reduced through a new feature selection method based on the correlation analysis of inter-subbands and intra-subbands. Performance analysis is made in detail for the statistics of the MCM and wavelet energy feature. The proposed MCM is measured through the classification test on the Brodatz album. Experimental results demonstrate that MCM statistics outperforms other methods such as wavelet energy, GLCM, and the catenation of these two features. Extensive experiments on feature selection show the effectiveness of the proposed method, which can reduce the dimension successfully without any loss of classification performance.

       

    /

    返回文章
    返回