Abstract:
Spatial classification and predication is one of the very important spatial data mining techniques, but the present research work on them is still in their initial stage. In this paper, a spatial classification and prediction algorithm based on fuzzy cmeans(SFCM) is proposed by introducing the concept of fuzzy membership degree of a spatial object to a fuzzy cluster. Firstly, this algorithm clusters the dataset by fuzzy cmeans, spatial information must be added into the fuzzy cmeans algorithm for spatial clustering due to spatial autocorrelation of spatial data. Secondly, it computer the fuzzy membership degree of each spatial object to all fuzzy clusters and finds the cluster that its fuzzy membership degree is the maximal. Finally, the dependent variable value of the spatial object is estimated by the dependent variable value of the mean object of the cluster. Theoretic analysis and experimental results show that SFCM is effective and efficient.