• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

精确覆盖问题的O(1.414\+n)链数DNA计算机算法

李肯立, 刘 杰, 杨 磊, 刘文斌

李肯立, 刘 杰, 杨 磊, 刘文斌. 精确覆盖问题的O(1.414\+n)链数DNA计算机算法[J]. 计算机研究与发展, 2008, 45(10): 1782-1788.
引用本文: 李肯立, 刘 杰, 杨 磊, 刘文斌. 精确覆盖问题的O(1.414\+n)链数DNA计算机算法[J]. 计算机研究与发展, 2008, 45(10): 1782-1788.
Li Kenli, Liu Jie, Yang Lei, Liu Wenbin. An O(1.414\+n) Volume Molecular Solutions for the Exact Cover Problem on DNA-Based Supercomputing[J]. Journal of Computer Research and Development, 2008, 45(10): 1782-1788.
Citation: Li Kenli, Liu Jie, Yang Lei, Liu Wenbin. An O(1.414\+n) Volume Molecular Solutions for the Exact Cover Problem on DNA-Based Supercomputing[J]. Journal of Computer Research and Development, 2008, 45(10): 1782-1788.

精确覆盖问题的O(1.414\+n)链数DNA计算机算法

An O(1.414\+n) Volume Molecular Solutions for the Exact Cover Problem on DNA-Based Supercomputing

  • 摘要: DNA计算机的可扩展性问题是近年来生物计算领域的重要研究重点之一.根据精确覆盖问题DNA计算求解过程中的并行计算需求,将Aldeman-Lipton模型的操作与粘贴模型的解空间结合,引入荧光标记和凝胶电泳技术,提出了一种求解精确覆盖问题的DNA计算模型和基于分治方法的DNA计算机算法.算法由初始解空间生成算法Init()、冗余解删除算法IllegalRemove()和并行搜索器ParallelSeacher()共3个子算法组成.与同类算法的性能比较分析表明:本算法在保持多项式生物操作复杂性的条件下,将求解n维精确覆盖问题的DNA链数从O(2\+n)减少至O(1.414\+n),从而将DNA计算机在试管内可求解的精确覆盖问题集合的基数从60提高到120,改进了相关文献的研究结果.
    Abstract: The scalability problem in DNA computer has been one of the important research areas in DNA computing. According to the requirement of the DNA parallel computing for exact cover problem, a DNA model for good scalability is proposed, which is based on the biological operations in the Adleman-Lipton model and the solution space of stickers in the sticker-based model by simultaneously taking the method of fluorescence labeling and the technique of gel electrophoresis into the model. Based on this model, a DNA-based algorithm for the exact cover problem, by making use of the strategem of divide-and-conquer, is also proposed which consists of three sub-algorithms: Init(), IllegalRemove(), and ParallelSeacher(). Compared with by far the best molecular algorithm for the exact cover problem with n variables and m sets in which O(2\+n) DNA strands are used, this algorithm can solve the same problem only using O(1.414\+n) DNA strands on the condition of not varying the time complexity. Therefore, the cardinal number of the exact cover problem that can be theoretically resolved in a test tube may be enlarged from 60 to 120, and thus the proposed algorithm is an improved result over the past researches.
计量
  • 文章访问数:  728
  • HTML全文浏览量:  0
  • PDF下载量:  646
  • 被引次数: 0
出版历程
  • 发布日期:  2008-10-14

目录

    /

    返回文章
    返回