高级检索

    KMA-α:一个支持向量机核矩阵的近似计算算法

    KMA-α:A Kernel Matrix Approximation Algorithm for Support Vector Machines

    • 摘要: 核矩阵计算是求解支持向量机的关键,已有精确计算方法难以处理大规模的样本数据.为此,研究核矩阵的近似计算方法.首先,借助支持向量机的凸二次约束线性规划表示,给出支持向量机和多核支持向量机的二阶锥规划表示.然后,综合Monte Carlo方法和不完全Cholesky分解方法,提出一个新的核矩阵近似算法KMA-α,该算法首先对核矩阵进行Monte Carlo随机采样,采样后不直接进行奇异值分解,而是应用具有对称置换的不完全Cholesky分解来计算接近最优的低秩近似.以KMA-α输出的近似核矩阵作为支持向量机的输入,可提高支持向量机二阶锥规划求解的效率.进一步,分析了KMA-α的算法复杂性,证明了KMA-α的近似误差界定理.最后,通过标准数据集上的实验,验证了KMA-α的合理性和计算效率.理论分析与实验结果表明,KMA-α是一合理、有效的核矩阵近似算法.

       

      Abstract: The computation of kernel matrices is essential for solving the support vector machines (SVM). Since the previous accurate approach is hard to apply in large-scale problems, there has been a lot deal of recent interests in the approximate approach, and a new approximation algorithm for the computation of kernel matrices is proposed in this paper. Firstly, we reformulate the quadratic optimization for SVM and multiple kernel SVM as a second-order cone programming (SOCP) through the convex quadratically constrained linear programming (QCLP). Then, we synthesize the Monte Carlo approximation and the incomplete Cholesky factorization, and present a new kernel matrix approximation algorithm KMA-α. KMA-α uses the Monte Carlo algorithm to randomly sample the kernel matrix. Rather than directly calculate the singular value decomposition of the sample matrix, KMA-α applies the incomplete Cholesky factorization with symmetric permutation to obtain the near-optimal low rank approximation of the sample matrix. The approximate matrix produced by KMA-α can be used in SOCP to improve the efficiency of SVM. Further, we analyze the computational complexity and prove the error bound theorem about the KMA-αalgorithm. Finally, by the comparative experiments on benchmark datasets, we verify the validity and the efficiency of KMA-α. Theoretical and experimental results show that KMA-α is a valid and efficient kernel matrix approximation algorithm.

       

    /

    返回文章
    返回