高级检索

    一种挖掘最大频繁项集的深度优先算法

    A Depth-First Search Algorithm for Mining Maximal Frequent Itemsets

    • 摘要: 最大频繁项集挖掘是许多数据挖掘应用中的重要问题.提出一种新的深度优先搜索最大频繁项集的算法.该算法采用位图数据格式,结合了流行的各种有效剪枝技术,并使用局部最大频繁项集来进行高效的超集存在判断,明显地加速了最大频繁项集的生成,从而降低了CPU时间.

       

      Abstract: Maximal frequent itemsets mining is a fundamental and important problem in many data mining applications. Since the MaxMiner algorithm first introduced the enumeration tree for MFI mining in 1998, there have been several proposed methods using depth-first search to improve performance. Here presented is DFMfi, a new depth-first search algorithm for mining maximal frequent itemsets. DFMfi adopts bitmap data format, several popular prune techniques which prune the search space efficiently, and local maximal frequent itemsets for superset checking quickly. Experimental comparison with the previous work indicates that it accelerates the generation of maximal frequent itemsets obviously, thus reducing CPU time.

       

    /

    返回文章
    返回