高级检索

    一种具有感觉的微粒群算法

    A Sentient Particle Swarm Optimization

    • 摘要: 针对耗散式微粒群算法对历史经验有限的利用能力,提出了一种新颖的具有感觉特征的群体智能算法,它通过对个体建立感觉模型,对受外界刺激产生的感觉强度进行量化,使个体在自身认知及社会活动环节中表现出了合理的自适应能力.对群体智能中感觉活动这个系统复杂性层面的考虑使算法具备完善的全局、局部搜索和协调能力.对常用单峰多峰基准函数的测试验证了该算法的效率和优越性,而且简洁易实现.最后对算法的参数也做了分析与讨论.

       

      Abstract: A new particle swarm optimization characterized by sensation is presented to improve the limited capability of dissipative particle swarm optimization in exploiting history experience. It guides individuals to behave reasonably with the capability of self-adaptation in activities of self-cognition and sociality via quantifying the sensation intension as a result of environmental stimulation according to the sensation model. Considering the complexity of a swarm intelligent system at the level of sensation brings about optimization of the comprehensive capability of global, local searching and cooperating with each other. The testing of three uni?multi-modal benchmark functions commonly used in the evolutionary computation proves the superiority and efficiency of the simple algorithm that can be easily implemented. Finally, the algorithm's parameters are also analyzed and discussed.

       

    /

    返回文章
    返回