• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

变熵画像:一种数量级压缩物端数据的多粒度信息模型

朝鲁, 彭晓晖, 徐志伟

朝鲁, 彭晓晖, 徐志伟. 变熵画像:一种数量级压缩物端数据的多粒度信息模型[J]. 计算机研究与发展, 2018, 55(8): 1653-1666. DOI: 10.7544/issn1000-1239.2018.20180219
引用本文: 朝鲁, 彭晓晖, 徐志伟. 变熵画像:一种数量级压缩物端数据的多粒度信息模型[J]. 计算机研究与发展, 2018, 55(8): 1653-1666. DOI: 10.7544/issn1000-1239.2018.20180219
Chao Lu, Peng Xiaohui, Xu Zhiwei. Variant Entropy Profile: A Multi-Granular Information Model for Data on Things with Order-of-Magnitude Compression Ratios[J]. Journal of Computer Research and Development, 2018, 55(8): 1653-1666. DOI: 10.7544/issn1000-1239.2018.20180219
Citation: Chao Lu, Peng Xiaohui, Xu Zhiwei. Variant Entropy Profile: A Multi-Granular Information Model for Data on Things with Order-of-Magnitude Compression Ratios[J]. Journal of Computer Research and Development, 2018, 55(8): 1653-1666. DOI: 10.7544/issn1000-1239.2018.20180219
朝鲁, 彭晓晖, 徐志伟. 变熵画像:一种数量级压缩物端数据的多粒度信息模型[J]. 计算机研究与发展, 2018, 55(8): 1653-1666. CSTR: 32373.14.issn1000-1239.2018.20180219
引用本文: 朝鲁, 彭晓晖, 徐志伟. 变熵画像:一种数量级压缩物端数据的多粒度信息模型[J]. 计算机研究与发展, 2018, 55(8): 1653-1666. CSTR: 32373.14.issn1000-1239.2018.20180219
Chao Lu, Peng Xiaohui, Xu Zhiwei. Variant Entropy Profile: A Multi-Granular Information Model for Data on Things with Order-of-Magnitude Compression Ratios[J]. Journal of Computer Research and Development, 2018, 55(8): 1653-1666. CSTR: 32373.14.issn1000-1239.2018.20180219
Citation: Chao Lu, Peng Xiaohui, Xu Zhiwei. Variant Entropy Profile: A Multi-Granular Information Model for Data on Things with Order-of-Magnitude Compression Ratios[J]. Journal of Computer Research and Development, 2018, 55(8): 1653-1666. CSTR: 32373.14.issn1000-1239.2018.20180219

变熵画像:一种数量级压缩物端数据的多粒度信息模型

基金项目: 国家自然科学基金重点项目(61532016);中国科学院率先行动“百人计划”项目(Y704061000) This work was supported by the Key Program of the National Natural Science Foundation of China (61532016) and the CAS Pioneer Hundred Talents Program (Y704061000).
详细信息
  • 中图分类号: TP391

Variant Entropy Profile: A Multi-Granular Information Model for Data on Things with Order-of-Magnitude Compression Ratios

  • 摘要: 近年来由物联网边缘和物端设备产生的数据呈现出爆发式的增长,催生了边缘计算、物端计算等新型物联网计算模式,利用“计算向数据源靠近”这一理念从架构上显著地改善了整体系统性能和能耗.然而,大量资源相对受限的物端设备暴露了现有计算模式的2个缺陷:1)由于不能存储海量数据导致部分计算无法下沉至末端;2)由于无法针对多样化的应用需求提供多粒度信息支持导致冗余计算和存储开销.围绕这2个问题,提出了一种数量级压缩物端数据的多粒度信息模型——变熵画像(variant entropy profile, VEP),及其TSR-VEP数据存储原型.基于真实的智能电表数据集和基准测试实验结果表明:VEP能在较低应用观测误差的前提下,实现物端数据的数量级压缩和多粒度信息存储查询.结合测试结果的讨论显示了VEP具备应用于物端设备的可行性与进一步优化边缘计算和物端计算的潜力.
    Abstract: In recent years, the massive produced data by the devices of edges and things has brought new paradigms like edge computing and things computing to apply in the Internet of things, which can optimize the performance and energy consumption by moving the computation tasks to the data source as near as possible. However, innumerous resource-constrained devices of things expose two defects of current paradigms, which are computations cannot be offloaded to the endpoint due to the lack of massive data storage capacity, and the redundant computation and storage for raw data bring overheads due to the lack of multi-granular information support for various application demands. To address these two issues, this article proposes a multi-granular information model for data on things with order-of-magnitude compression ratios, called variant entropy model (VEP), and implements a prototype storage module of TSR-VEP. Evaluations on the real smart meter datasets and benchmarks show that VEP can achieve order-of-magnitude compression ratios and multi-granular information storage and query under low application observed errors. Discussion on the test results demonstrates the feasibility of applying VEP on devices of things and the potential of further optimizing for edge computing and things computing.
  • 期刊类型引用(6)

    1. 徐雪峰,郭广伟,黄余. 改进全卷积神经网络的遥感图像小目标检测. 机械设计与制造. 2024(10): 38-42 . 百度学术
    2. 刘雯雯,汪皖燕,程树林. 融合项目热门惩罚因子改进协同过滤推荐方法. 计算机技术与发展. 2023(03): 15-19 . 百度学术
    3. 冯勇,刘洋,王嵘冰,徐红艳,张永刚. 面向用户需求的生成对抗网络多样性推荐方法. 小型微型计算机系统. 2023(06): 1192-1197 . 百度学术
    4. 冯晨娇,宋鹏,张凯涵,梁吉业. 融合社交网络信息的长尾推荐方法. 模式识别与人工智能. 2022(01): 26-36 . 百度学术
    5. 韩迪,陈怡君,廖凯,林坤玲. 推荐系统中的准确性、新颖性和多样性的有效耦合与应用. 南京大学学报(自然科学). 2022(04): 604-614 . 百度学术
    6. 甘亚男,耿生玲,郝立. 超贝叶斯图模型及其联结树的构建. 青海师范大学学报(自然科学版). 2021(02): 42-48 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  1552
  • HTML全文浏览量:  0
  • PDF下载量:  521
  • 被引次数: 14
出版历程
  • 发布日期:  2018-07-31

目录

    /

    返回文章
    返回