A Fine-Grained Multi-Access Edge Computing Architecture for Cloud-Network Integration
-
摘要: 随着智能终端设备的爆发式增长,多接入边缘计算(multi-access edge computing, MEC)成为支持多服务、多租户生态系统的关键技术之一.多接入边缘计算通过结合云端的移动计算技术和接入网的无线通信技术,实现了云端和网络的高效融合.然而,目前的边缘计算技术对于所有可能的资源(例如计算、通信、缓存)并没有细粒度的控制能力,因此并不能对延迟敏感的实时服务提供很好的支持.为了解决这个关键问题,设计了一种基于软件定义(software defined)的细粒度多接入边缘计算架构,可以对网络资源和计算资源进行细粒度的控制并进行协同管理,并设计了一种基于深度强化学习Q-Learning的两级资源分配策略,从而提供更有效的计算卸载和服务增强.大量的仿真实验证明了该架构的有效性.Abstract: Nowadays, a paradigm shift in mobile computing has been introduced by the ever-increasing heterogenous terminal devices, from the centralized mobile cloud towards the mobile edge. Multi-access edge computing (MEC) emerges as a promising ecosystem to support multi-service and multi-tenancy. It takes advantage of both mobile computing and wireless communication technologies for cloud-network integration. However, the physical hardware constraints of the terminal devices, along with the limited connection capacity of the wireless channel pose numerous challenges for cloud-network integration. The incapability of control over all the possible resources (e.g., computation, communication, cache) becomes the main hurdle of realizing delay-sensitive and real time services. To break this stalemate, this article investigates a software-defined fine-grained multi-access architecture, which takes full control of the computation and communication resources. We further investigate a Q-Learning based two-stage resource allocation strategy to better cater the heterogenous radio environments and various user requirements. We discuss the feasibility of the proposed architecture and demonstrate its effectiveness through extensive simulations.
-
-
期刊类型引用(7)
1. 张淑芬,张宏扬,任志强,陈学斌. 联邦学习的公平性综述. 计算机应用. 2025(01): 1-14 . 百度学术
2. 朱智韬,司世景,王健宗,程宁,孔令炜,黄章成,肖京. 联邦学习的公平性研究综述. 大数据. 2024(01): 62-85 . 百度学术
3. 李锦辉,吴毓峰,余涛,潘振宁. 数据孤岛下基于联邦学习的用户电价响应刻画及其应用. 电力系统保护与控制. 2024(06): 164-176 . 百度学术
4. 刘新,刘冬兰,付婷,王勇,常英贤,姚洪磊,罗昕,王睿,张昊. 基于联邦学习的时间序列预测算法. 山东大学学报(工学版). 2024(03): 55-63 . 百度学术
5. 赵泽华,梁美玉,薛哲,李昂,张珉. 基于数据质量评估的高效强化联邦学习节点动态采样优化. 智能系统学报. 2024(06): 1552-1561 . 百度学术
6. 杨秀清,彭长根,刘海,丁红发,汤寒林. 基于数据质量评估的公平联邦学习方案. 计算机与数字工程. 2022(06): 1278-1285 . 百度学术
7. 黎志鹏. 高可靠的联邦学习在图神经网络上的聚合方法. 工业控制计算机. 2022(10): 85-87+90 . 百度学术
其他类型引用(10)
计量
- 文章访问数: 785
- HTML全文浏览量: 2
- PDF下载量: 453
- 被引次数: 17