• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

一种基于K-shell影响力最大化的路径择优计算迁移算法

乐光学, 陈光鲁, 卢敏, 杨晓慧, 刘建华, 黄淳岚, 杨忠明

乐光学, 陈光鲁, 卢敏, 杨晓慧, 刘建华, 黄淳岚, 杨忠明. 一种基于K-shell影响力最大化的路径择优计算迁移算法[J]. 计算机研究与发展, 2021, 58(9): 2025-2039. DOI: 10.7544/issn1000-1239.2021.20200338
引用本文: 乐光学, 陈光鲁, 卢敏, 杨晓慧, 刘建华, 黄淳岚, 杨忠明. 一种基于K-shell影响力最大化的路径择优计算迁移算法[J]. 计算机研究与发展, 2021, 58(9): 2025-2039. DOI: 10.7544/issn1000-1239.2021.20200338
Yue Guangxue, Chen Guanglu, Lu Min, Yang Xiaohui, Liu Jianhua, Huang Chunlan, Yang Zhongming. A Computation Offloading Algorithm with Path Selection Based on K-shell Influence Maximization[J]. Journal of Computer Research and Development, 2021, 58(9): 2025-2039. DOI: 10.7544/issn1000-1239.2021.20200338
Citation: Yue Guangxue, Chen Guanglu, Lu Min, Yang Xiaohui, Liu Jianhua, Huang Chunlan, Yang Zhongming. A Computation Offloading Algorithm with Path Selection Based on K-shell Influence Maximization[J]. Journal of Computer Research and Development, 2021, 58(9): 2025-2039. DOI: 10.7544/issn1000-1239.2021.20200338
乐光学, 陈光鲁, 卢敏, 杨晓慧, 刘建华, 黄淳岚, 杨忠明. 一种基于K-shell影响力最大化的路径择优计算迁移算法[J]. 计算机研究与发展, 2021, 58(9): 2025-2039. CSTR: 32373.14.issn1000-1239.2021.20200338
引用本文: 乐光学, 陈光鲁, 卢敏, 杨晓慧, 刘建华, 黄淳岚, 杨忠明. 一种基于K-shell影响力最大化的路径择优计算迁移算法[J]. 计算机研究与发展, 2021, 58(9): 2025-2039. CSTR: 32373.14.issn1000-1239.2021.20200338
Yue Guangxue, Chen Guanglu, Lu Min, Yang Xiaohui, Liu Jianhua, Huang Chunlan, Yang Zhongming. A Computation Offloading Algorithm with Path Selection Based on K-shell Influence Maximization[J]. Journal of Computer Research and Development, 2021, 58(9): 2025-2039. CSTR: 32373.14.issn1000-1239.2021.20200338
Citation: Yue Guangxue, Chen Guanglu, Lu Min, Yang Xiaohui, Liu Jianhua, Huang Chunlan, Yang Zhongming. A Computation Offloading Algorithm with Path Selection Based on K-shell Influence Maximization[J]. Journal of Computer Research and Development, 2021, 58(9): 2025-2039. CSTR: 32373.14.issn1000-1239.2021.20200338

一种基于K-shell影响力最大化的路径择优计算迁移算法

基金项目: 国家自然科学基金项目(U19B2015);浙江省“鲲鹏行动”计划支持项目
详细信息
  • 中图分类号: TP393

A Computation Offloading Algorithm with Path Selection Based on K-shell Influence Maximization

Funds: This work was supported by the National Natural Science Foundation of China (U19B2015) and the Top-level Talent Project of Zhejiang Province.
  • 摘要: 在移动边缘计算网络中,高效的计算迁移算法是移动边缘计算的重要问题之一.为了提高计算迁移算法性能,应用同类问题的相互转换性和最大化影响力模型,利用K-shell算法对边缘服务器进行等级划分,考虑边缘服务器负载过重问题,构建路径重叠(path overlap, PO)算法,引入通信质量、交互强度、列队处理能力等指标进行边缘服务器路径优化,将优化计算任务迁移路径问题转化为社会网络影响力最大化问题求解.基于K-shell影响力最大化思想,联合优化改进贪心与启发式算法,提出一种K-shell影响力最大化计算迁移(K-shell influence maximization computation offloading, Ks-IMCO)算法,求解计算迁移问题.与随机分配(random allocation, RA)算法、支持路径切换选择的(path selection with handovers, PSwH)算法在不同实验场景下对比分析,Ks-IMCO算法的能耗、延迟等明显提升,能有效提高边缘计算网络计算迁移的效率.
    Abstract: As edge computing and cloud computing develop in a rapid speed and integrate with each other, resources and services gradually offload from the core network to the edge of the network. Efficient computation offloading algorithm is one of the most important problems in mobile edge computing networks. In order to improve the performance of the algorithm, a computation offloading algorithm with path selection based on K-shell influence maximization is proposed. The K-shell method is used to grade the edge servers by applying the convertibility and maximizing influence model of similar problems. Otherwise, considering the problem of excessive load of edge servers, path overlap (PO) algorithm is constructed, and indicators such as the communication quality, interaction strength, and queue processing ability, etc. are introduced to optimize the performance of the algorithm. The offloading path problem of the optimization calculation task is transformed into the social network impact maximization problem. Based on the idea of maximizing K-shell influence, greedy and heuristic algorithms are optimized and improved, and the K-shell influence maximization computation offloading (Ks-IMCO) algorithm is proposed to solve the problem of computational offloading. Through the comparative analysis of Ks-IMCO and random allocation (RA), path selection with handovers (PSwH) algorithm experiments, the energy consumption and delay of Ks-IMCO algorithm have been significantly improved, which can effectively improve the efficiency of edge computing network computing offloading.
  • 期刊类型引用(7)

    1. 张淑芬,张宏扬,任志强,陈学斌. 联邦学习的公平性综述. 计算机应用. 2025(01): 1-14 . 百度学术
    2. 朱智韬,司世景,王健宗,程宁,孔令炜,黄章成,肖京. 联邦学习的公平性研究综述. 大数据. 2024(01): 62-85 . 百度学术
    3. 李锦辉,吴毓峰,余涛,潘振宁. 数据孤岛下基于联邦学习的用户电价响应刻画及其应用. 电力系统保护与控制. 2024(06): 164-176 . 百度学术
    4. 刘新,刘冬兰,付婷,王勇,常英贤,姚洪磊,罗昕,王睿,张昊. 基于联邦学习的时间序列预测算法. 山东大学学报(工学版). 2024(03): 55-63 . 百度学术
    5. 赵泽华,梁美玉,薛哲,李昂,张珉. 基于数据质量评估的高效强化联邦学习节点动态采样优化. 智能系统学报. 2024(06): 1552-1561 . 百度学术
    6. 杨秀清,彭长根,刘海,丁红发,汤寒林. 基于数据质量评估的公平联邦学习方案. 计算机与数字工程. 2022(06): 1278-1285 . 百度学术
    7. 黎志鹏. 高可靠的联邦学习在图神经网络上的聚合方法. 工业控制计算机. 2022(10): 85-87+90 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  566
  • HTML全文浏览量:  1
  • PDF下载量:  185
  • 被引次数: 17
出版历程
  • 发布日期:  2021-08-31

目录

    /

    返回文章
    返回