• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

工控协议逆向分析技术研究与挑战

黄涛, 付安民, 季宇凯, 毛安, 王占丰, 胡超

黄涛, 付安民, 季宇凯, 毛安, 王占丰, 胡超. 工控协议逆向分析技术研究与挑战[J]. 计算机研究与发展, 2022, 59(5): 1015-1034. DOI: 10.7544/issn1000-1239.20211149
引用本文: 黄涛, 付安民, 季宇凯, 毛安, 王占丰, 胡超. 工控协议逆向分析技术研究与挑战[J]. 计算机研究与发展, 2022, 59(5): 1015-1034. DOI: 10.7544/issn1000-1239.20211149
Huang Tao, Fu Anmin, Ji Yukai, Mao An, Wang Zhanfeng, Hu Chao. Research and Challenges on Reverse Analysis Technology of Industrial Control Protocol[J]. Journal of Computer Research and Development, 2022, 59(5): 1015-1034. DOI: 10.7544/issn1000-1239.20211149
Citation: Huang Tao, Fu Anmin, Ji Yukai, Mao An, Wang Zhanfeng, Hu Chao. Research and Challenges on Reverse Analysis Technology of Industrial Control Protocol[J]. Journal of Computer Research and Development, 2022, 59(5): 1015-1034. DOI: 10.7544/issn1000-1239.20211149
黄涛, 付安民, 季宇凯, 毛安, 王占丰, 胡超. 工控协议逆向分析技术研究与挑战[J]. 计算机研究与发展, 2022, 59(5): 1015-1034. CSTR: 32373.14.issn1000-1239.20211149
引用本文: 黄涛, 付安民, 季宇凯, 毛安, 王占丰, 胡超. 工控协议逆向分析技术研究与挑战[J]. 计算机研究与发展, 2022, 59(5): 1015-1034. CSTR: 32373.14.issn1000-1239.20211149
Huang Tao, Fu Anmin, Ji Yukai, Mao An, Wang Zhanfeng, Hu Chao. Research and Challenges on Reverse Analysis Technology of Industrial Control Protocol[J]. Journal of Computer Research and Development, 2022, 59(5): 1015-1034. CSTR: 32373.14.issn1000-1239.20211149
Citation: Huang Tao, Fu Anmin, Ji Yukai, Mao An, Wang Zhanfeng, Hu Chao. Research and Challenges on Reverse Analysis Technology of Industrial Control Protocol[J]. Journal of Computer Research and Development, 2022, 59(5): 1015-1034. CSTR: 32373.14.issn1000-1239.20211149

工控协议逆向分析技术研究与挑战

基金项目: 国家自然科学基金项目(62072239);江苏省自然科学基金项目(BK20211192);广西可信软件重点实验室研究课题(KX202029);未来网络科研基金项目(FNSRFP-2021-ZD-05);中央高校基本科研业务费专项资金(30920021129);江苏省高等学校基础科学(自然科学)研究项目(21KJB520001)
详细信息
  • 中图分类号: TP391

Research and Challenges on Reverse Analysis Technology of Industrial Control Protocol

Funds: This work was supported by the National Natural Science Foundation of China (62072239), the Natural Science Foundation of Jiangsu Province (BK20211192), the Project of Guangxi Key Laboratory of Trusted Software (KX202029), the Future Network Scientific Research Fund Project(FNSRFP-2021-ZD-05), the Fundamental Research Funds for the Central Universities (30920021129), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (21KJB520001).
  • 摘要: 近年来,工业互联网的安全事件日益频发,尤其是工业控制系统(industrial control system, ICS),该现象揭示了目前ICS中已经存在较多的安全隐患,并且那些针对ICS安全隐患的大多数攻击和防御方法都需要对工控协议进行分析.然而,目前ICS中大多数私有工控协议都具有与普通互联网协议完全不同的典型特征,如结构、字段精度、周期性等方面,导致针对互联网协议的逆向分析技术通常都无法直接适用于工控协议.因此,针对工控协议的逆向分析技术已经成为近几年学术界和产业界的研究热点.首先结合2种典型工控协议,深入分析和总结了工控协议的结构特征.其次,给出了工控协议逆向分析框架,深入剖析了基于程序执行和基于报文序列的工控协议逆向分析框架的特点,并依次从人机参与程度和协议格式提取方式这2个角度,重点针对基于报文序列的工控协议分析方法进行详细阐述和对比分析.最后探讨了现有逆向分析方法的特点及不足,并对工控协议逆向分析技术的未来研究方向进行展望与分析.
    Abstract: In recent years, the security incidents of the industrial Internet have become more frequent, especially the industrial control systems (ICS), which reveals that there are already many hidden security risks in ICS. Meanwhile, most of the attack and defense methods against those ICS security risks need to analyze the industrial control protocol. However, most of the private industrial control protocols in ICS have typical characteristics that are completely different from ordinary Internet protocols, such as structure, field accuracy and periodicity, and as a result, those reverse analysis techniques for Internet protocols are generally not directly applicable to industrial control protocols. Therefore, the reverse analysis technology for industrial control protocols has become a research hotspot in academia and industry recently. In the paper, firstly, the structural characteristics of industrial control protocols are illustrated and summarized with two typical industrial control protocols. Secondly, we introduce the frameworks for reverse analysis of industrial control protocols, and deeply analyze the characteristics of frameworks based on program execution and packet sequence respectively. Then the industrial control protocols reverse methods based on packet sequence are analyzed and compared in detail from multiple perspectives, such as the degree of human-computer participation and the extraction method of protocol format. Finally, we discuss the characteristics and shortcomings of the existing reverse analysis methods, and prospect and analyze the future research directions of industrial control protocol reverse analysis technology.
  • 期刊类型引用(7)

    1. 张淑芬,张宏扬,任志强,陈学斌. 联邦学习的公平性综述. 计算机应用. 2025(01): 1-14 . 百度学术
    2. 朱智韬,司世景,王健宗,程宁,孔令炜,黄章成,肖京. 联邦学习的公平性研究综述. 大数据. 2024(01): 62-85 . 百度学术
    3. 李锦辉,吴毓峰,余涛,潘振宁. 数据孤岛下基于联邦学习的用户电价响应刻画及其应用. 电力系统保护与控制. 2024(06): 164-176 . 百度学术
    4. 刘新,刘冬兰,付婷,王勇,常英贤,姚洪磊,罗昕,王睿,张昊. 基于联邦学习的时间序列预测算法. 山东大学学报(工学版). 2024(03): 55-63 . 百度学术
    5. 赵泽华,梁美玉,薛哲,李昂,张珉. 基于数据质量评估的高效强化联邦学习节点动态采样优化. 智能系统学报. 2024(06): 1552-1561 . 百度学术
    6. 杨秀清,彭长根,刘海,丁红发,汤寒林. 基于数据质量评估的公平联邦学习方案. 计算机与数字工程. 2022(06): 1278-1285 . 百度学术
    7. 黎志鹏. 高可靠的联邦学习在图神经网络上的聚合方法. 工业控制计算机. 2022(10): 85-87+90 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  533
  • HTML全文浏览量:  11
  • PDF下载量:  214
  • 被引次数: 17
出版历程
  • 发布日期:  2022-04-30

目录

    /

    返回文章
    返回