• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

移动边缘网络中联邦学习效率优化综述

孙兵, 刘艳, 王田, 彭绍亮, 王国军, 贾维嘉

孙兵, 刘艳, 王田, 彭绍亮, 王国军, 贾维嘉. 移动边缘网络中联邦学习效率优化综述[J]. 计算机研究与发展, 2022, 59(7): 1439-1469. DOI: 10.7544/issn1000-1239.20210119
引用本文: 孙兵, 刘艳, 王田, 彭绍亮, 王国军, 贾维嘉. 移动边缘网络中联邦学习效率优化综述[J]. 计算机研究与发展, 2022, 59(7): 1439-1469. DOI: 10.7544/issn1000-1239.20210119
Sun Bing, Liu Yan, Wang Tian, Peng Shaoliang, Wang Guojun, Jia Weijia. Survey on Optimization of Federated Learning Efficiency in Mobile Edge Networks[J]. Journal of Computer Research and Development, 2022, 59(7): 1439-1469. DOI: 10.7544/issn1000-1239.20210119
Citation: Sun Bing, Liu Yan, Wang Tian, Peng Shaoliang, Wang Guojun, Jia Weijia. Survey on Optimization of Federated Learning Efficiency in Mobile Edge Networks[J]. Journal of Computer Research and Development, 2022, 59(7): 1439-1469. DOI: 10.7544/issn1000-1239.20210119
孙兵, 刘艳, 王田, 彭绍亮, 王国军, 贾维嘉. 移动边缘网络中联邦学习效率优化综述[J]. 计算机研究与发展, 2022, 59(7): 1439-1469. CSTR: 32373.14.issn1000-1239.20210119
引用本文: 孙兵, 刘艳, 王田, 彭绍亮, 王国军, 贾维嘉. 移动边缘网络中联邦学习效率优化综述[J]. 计算机研究与发展, 2022, 59(7): 1439-1469. CSTR: 32373.14.issn1000-1239.20210119
Sun Bing, Liu Yan, Wang Tian, Peng Shaoliang, Wang Guojun, Jia Weijia. Survey on Optimization of Federated Learning Efficiency in Mobile Edge Networks[J]. Journal of Computer Research and Development, 2022, 59(7): 1439-1469. CSTR: 32373.14.issn1000-1239.20210119
Citation: Sun Bing, Liu Yan, Wang Tian, Peng Shaoliang, Wang Guojun, Jia Weijia. Survey on Optimization of Federated Learning Efficiency in Mobile Edge Networks[J]. Journal of Computer Research and Development, 2022, 59(7): 1439-1469. CSTR: 32373.14.issn1000-1239.20210119

移动边缘网络中联邦学习效率优化综述

基金项目: 国家重点研发计划项目(2022YFE0201400); 国家自然科学基金项目(62172046);福建省自然科学基金项目(2020J06023);广东省教育厅普通高校重点专项(2021ZDZX1063);珠海市产学研项目(ZH22017001210133PWC);广东省教育厅人工智能与多模态数据处理重点实验室项目(2020KSYS007);UIC科研启动经费(R72021202)
详细信息
  • 中图分类号: TP391

Survey on Optimization of Federated Learning Efficiency in Mobile Edge Networks

Funds: This work was supported by the National Key Research and Development Program of China (2022YFE0201400), the National Natural Science Foundation of China (62172046), the Natural Science Foundation of Fujian Province of China (2020J06023), the Special Project of Guangdong Provincial Department of Education in Key Fields of Colleges and Universities (2021ZDZX1063), the Joint Project of Production, Teaching and Research of Zhuhai (ZH22017001210133PWC), the Key Laboratory Project for AI and Multi-modal Data Processing of Department of Education of Guangdong Province (2020KSYS007), and the UIC Start-up Research Fund (R72021202).
  • 摘要: 联邦学习(federated learning)将模型训练任务部署在移动边缘设备,参与者只需将训练后的本地模型发送到服务器参与全局聚合而无须发送原始数据,提高了数据隐私性.然而,解决效率问题是联邦学习落地的关键.影响效率的主要因素包括设备与服务器之间的通信消耗、模型收敛速率以及移动边缘网络中存在的安全与隐私风险.在充分调研后,首先将联邦学习的效率优化归纳为通信、训练与安全隐私保护3类.具体来说,从边缘协调与模型压缩的角度讨论分析了通信优化方案;从设备选择、资源协调、聚合控制与数据优化4个方面讨论分析了训练优化方案;从安全与隐私的角度讨论分析了联邦学习的保护机制.其次,通过对比相关技术的创新点与贡献,总结了现有方案的优点与不足,探讨了联邦学习所面临的新挑战.最后,基于边缘计算的思想提出了边缘化的联邦学习解决方案,在数据优化、自适应学习、激励机制和隐私保护等方面给出了创新理念与未来展望.
    Abstract: Federated learning deploys deep learning training tasks on mobile edge networks. Mobile devices participating in learning only need to send the trained local models to the server instead of sending personal data, thereby protecting the data privacy of users. To speed up the implementation of federated learning, optimization of efficiency is the key. The main factors affecting efficiency include communication consumption between device and server, model convergence rate, and security and privacy risk of mobile edge networks. Based on thoroughly investigating the existing optimization methods, we summarize the efficiency optimization of federated learning into communication optimization, training optimization, and protection mechanism for the first time. Specifically, we discuss the optimization of federated learning communication from two aspects of edge computing coordination and model compression which can reduce the frequency of communication and resource consumption. Then, we review the optimization of federated learning process from four elements of device selection, resource coordination, model aggregation control, and data optimization similarly, because there are many heterogeneous factors in the mobile edge networks, such as the different computing resources of mobile devices and different data quality. Furthermore, the security and privacy protection mechanisms of federated learning are expounded. After comparing the innovation points and contributions of related technologies, the advantages and disadvantages of the existing solutions are concluded and the new challenges faced by federated learning are discussed. Finally, we propose edge-intelligent federated learning based on the idea of edge computing, provide innovative methods and future research directions in data optimization, adaptive learning, incentive mechanisms, and advanced technology.
  • 期刊类型引用(7)

    1. 张淑芬,张宏扬,任志强,陈学斌. 联邦学习的公平性综述. 计算机应用. 2025(01): 1-14 . 百度学术
    2. 朱智韬,司世景,王健宗,程宁,孔令炜,黄章成,肖京. 联邦学习的公平性研究综述. 大数据. 2024(01): 62-85 . 百度学术
    3. 李锦辉,吴毓峰,余涛,潘振宁. 数据孤岛下基于联邦学习的用户电价响应刻画及其应用. 电力系统保护与控制. 2024(06): 164-176 . 百度学术
    4. 刘新,刘冬兰,付婷,王勇,常英贤,姚洪磊,罗昕,王睿,张昊. 基于联邦学习的时间序列预测算法. 山东大学学报(工学版). 2024(03): 55-63 . 百度学术
    5. 赵泽华,梁美玉,薛哲,李昂,张珉. 基于数据质量评估的高效强化联邦学习节点动态采样优化. 智能系统学报. 2024(06): 1552-1561 . 百度学术
    6. 杨秀清,彭长根,刘海,丁红发,汤寒林. 基于数据质量评估的公平联邦学习方案. 计算机与数字工程. 2022(06): 1278-1285 . 百度学术
    7. 黎志鹏. 高可靠的联邦学习在图神经网络上的聚合方法. 工业控制计算机. 2022(10): 85-87+90 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  1097
  • HTML全文浏览量:  18
  • PDF下载量:  635
  • 被引次数: 17
出版历程
  • 发布日期:  2022-06-30

目录

    /

    返回文章
    返回