-
摘要:
随着云计算技术的不断发展,越来越多的企业和组织开始采用跨云的方式进行IT交付.跨云环境可以更有效地应对传统单云环境资源利用率低、资源受限以及供应商锁定等问题,并对云资源进行统一管理.由于跨云环境中资源具有异构性,导致跨云任务调度变得更为复杂.基于此,如何合理地调度用户任务并将其分配到最佳的跨云资源上执行,成为了跨云环境中需要解决的重要问题.拟从跨云环境的角度出发,探讨该环境下任务调度算法研究的进展及挑战.首先,结合跨云环境特征将云计算分为联盟云、多云环境并进行详细介绍,同时回顾已有的任务调度类型并分析其优缺点;其次,根据研究现状选取代表性文献对跨云环境下任务调度算法进行整理、分析;最后探讨了跨云环境下任务调度算法研究中的不足和未来的研究趋势,为跨云环境下任务调度算法的进一步研究提供了参考.
Abstract:As cloud computing technology advances continuously, there are a growing number of enterprises and organizations choosing the inter-cloud approach to apply on IT delivery. Inter-cloud environments can efficiently solve problems such as low resource utilization, resource limitation, and vendor lock-in in traditional single-cloud environments, and manage cloud resources in an integrated model. Due to the heterogeneity of resources in the inter-cloud environment, which will complicate the scheduling of inter-cloud tasks. Based on the current status, how to logically schedule user tasks and allocate them to the most suitable inter-cloud resources for execution has developed to be an important issue to be solved in the inter-cloud environment. From the perspective of the inter-cloud environment, we discuss the progress and future challenges of research on the task of scheduling algorithms under this environment. Firstly, combined with the characteristics of an inter-cloud environment, cloud computing is divided into federated cloud and multi-cloud environments and introduced in detail. Meanwhile, the existing task scheduling types are reviewed and their advantages and disadvantages are analyzed. Secondly, based on the classification and current research procedure, representative documents are selected to analyze the algorithms for task scheduling on inter-cloud. Finally, shortcomings in research on algorithms for task scheduling in inter-cloud and future research trends are discussed, which provide a reference for further research on inter-cloud task scheduling.
-
Keywords:
- cloud computing /
- inter-cloud /
- task scheduling /
- federated cloud /
- multi-cloud
-
-
表 1 单云环境下常见的任务调度算法
Table 1 Common Task Scheduling Algorithms in Single Cloud Environment
算法 调度机制 优点 缺点 FCFS 将任务按照到达的先后顺序调度资源. 易于实现 性能有限 Min_Min 将最小完成时间的任务分配到处理时间最短的资源上. 易于实现 资源利用率不高 Max_Min 将最大完成时间的任务分配到处理时间最短的资源上. 易于实现 资源利用率不高 MCT 将任务以任意顺序分配到具有最早完成时间的资源上. 任务完成时间短 任务总体执行时间长 MET 将任务分配到具有最小时间花费的资源上. 任务处理速度快 资源分配不均 RR 将任务分配到相同时间量的资源上. 易于实现、调度机制公平 性能有限 ACO 模拟蚂蚁的觅食方式,采用正反馈机制,依据信息素寻找最短路径. 收敛效果较好 初期速度较慢,等待时间长 PSO 模拟鸟群的觅食方式,粒子追随当前的最优粒子在解空间中搜索,通过迭代找到近似最优解. 易于实现、收敛速度快、效率高 易陷入局部最优 GA 模拟自然生物进化过程,通过选择、交叉、变异等方式不断迭代寻找最优解. 可扩展性强、全局优化 易过早收敛、较为依赖参数 SA 模拟固体退火过程,设定初始值不断迭代衰减得到近似最优解. 鲁棒性强、全局优化 收敛速度慢 TS 模拟人类的记忆机制,引入禁忌准则来避免迂回搜索最终得到最优解. 能够跳出局部最优 较为依赖初始解、搜索时间长 表 2 联盟云环境下任务调度算法对比
Table 2 Comparison of Task Scheduling Algorithms in Federated Cloud Environment
算法来源 算法描述 优化目标 工具 特点 文献[40] 通过成本决策函数的计算结果分配资源. 最大完成时间、成本 KVM (kernel-based virtual machine),OpenStack 优点:成本降低
缺点:限制成本会影响调度策略文献[41] 利用代理将博弈论引入其中,迫使资源实体之间进行隐性协调,最终向纳什均衡解靠拢. 成本 ProtoPeer platform 优点:成本降低,可伸缩性强
缺点:代理设计复杂文献[43] 将最大完成时间的任务分配到处理时间最短的资源上. 最大完成时间、负载均衡 BioNimbuZ,Amazon EC2 优点:任务完成时间减小
缺点:未考虑环境中其他因素影响表 3 异构公有云环境下任务调度算法对比
Table 3 Comparison of Task Scheduling Algorithms in Heterogeneous Public Cloud Environment
算法来源 算法描述 优化目标 工具 特点 文献[46] 通过二进制整数规划选取成本最优的资源分配. 成本 AMPL ,CPLEX 优点:成本降低
缺点:求解时间长,存在偏差文献[47] 利用适应度函数求导和变异的思想改进遗传算法. 最大完成时间 MATLAB 优点:任务完成时间减小
缺点:未考虑环境中其他因素影响文献[48] 为工作流任务中部分关键路径分配子截止时间. 成本 Workflow Generator 优点:成本降低,有截止时间约束
缺点:未考虑任务执行时间文献[49] 以多个随机键组成的向量作为输入并不断迭代,改进遗传算法减少调度中不必要的虚拟机数量. 最大完成时间、成本 Amazon EC2,Google
Cloud Platform,Microsoft Azure,Java优点:成本降低,响应迅速,可拓展性强
缺点:不支持工作流调度文献[50] 改进了遗传算法中的交叉及变异算子,允许云服务使用者根据偏好选择最优方案. 响应时间、成本、可靠性 QWS Dataset (2.0) 优点:响应迅速,可拓展性强,收敛速度快
缺点:参数设置复杂文献[51] 基于云服务提供商的历史价格计算其平均值及趋势,动态预测未来价格. 成本 Amazon EC2 优点:成本降低,负载均衡
缺点:需要大量时间收集云服务提供商的历时价格信息,未考虑环境中其他因素影响文献[52] 不断更新实际任务执行的信息,依据这些信息来动态调整资源
分配.最大完成时间、能耗 自建模拟测试平台 优点:能耗降低
缺点:未考虑环境中其他因素影响文献[53] 以最大完工时间和最小成本分别作为2个调度阶段的目标,将任务映射到合适的云资源上. 最大完成时间、成本、资源利用率 MATLAB 优点:实现了最大完成时间和成本之间的平衡
缺点:实际调度性能未知文献[54] 以最大完成时间、成本和可靠性作为多目标调度策略的3个QoS指标,后根据数据传输顺序将工作流任务分配到适当的云资源上. 最大完成时间、成本、可靠性 Amazon EC2, Microsoft Azure,Google Compute Engine,Python 优点:性能得到提升
缺点:未考虑虚拟机性能波动、能耗等问题文献[55] 使用预定义的优先级构建任务调度列表,后根据可靠性、成本、将任务分配给最优的资源. 最大完成时间、成本、可靠性 CloudSim 优点:架构新颖,性能较好,可靠性强
缺点:公有云计费机制考虑简单文献[56] 基于正弦函数的变化趋势,调度算法早期倾向于收敛,后期倾向于多样性. 最大完成时间、成本、吞吐量、能耗、资源利用率、负载均衡 CloudSim,MATLAB 优点:优化目标全面,可靠性强
缺点:实际调度性能未知文献[57] 基于成本模型、能量模型和性能模型改进遗传算法. 成本 CloudSim 优点:可降低大型和超大规模工作流的能耗
缺点:未考虑环境中其他因素影响文献[58] 考虑预算约束的前提下,使最大完成时间最小化. 最大完成时间 优点:考虑了最大完成时间和成本之间的平衡
缺点:实际调度性能未知表 4 公有云、私有云混合环境下任务调度算法对比
Table 4 Comparison of Task Scheduling Algorithms in Public Cloud and Private Cloud Hybrid Environment
算法来源 算法描述 优化目标 工具 特点 文献[63] 以成本为导向受截止时间约束. 成本 Amazon EC2, GoGrid, Java 优点:成本降低
缺点:未考虑调度时间文献[64] 将工作流调度到私有云上,估算工作流完成时间,之后从公有云租用合适的资源并将其聚合到私有云. 成本 自建模拟测试平台 优点:成本降低
缺点:未考虑环境中其他因素影响,实际调度性能未知文献[65] 在预计完成时间超过截止时间时,将开销最小、完成时间最短的任务调度到公有云上. 截止时间、成本 CloudSim 优点:成本降低
缺点:任务级别需要考虑的因素过多文献[66] 基于染色体编码、评估、选择、交叉和突变的改进遗传算法. 最大完成时间、成本 Amazon EC2 优点:可减少成本,完成协调
缺点:没有考虑任务执行时间变化的影响文献[67] 将最大成本的任务分配给私有云,当私有云资源不足时租用性价比最高的公有云资源. 任务完成数量、成本 Gaia Cluster 优点:安全性高
缺点:仅考虑了独立任务文献[68] 结合绿色数据中心的收益、绿色能源的价格以及公共云中资源的价格执行最优任务调度. 成本 MATLAB 优点:成本降低
缺点:未考虑环境中其他因素影响文献[69] 改进了NSGA-Ⅱ算法中基于帕累托最优的快速排序. 最大完成时间、成本 CloudSim 优点:成本降低
缺点:未考虑环境中其他因素影响 -
[1] 陈海波,夏虞斌,糜泽羽. 跨云计算的机遇、挑战与研究展望[J]. 中国计算机学会通讯,2017,13(3):30−34 Chen Haibo, Xia Yubin, Mi Zeyu. Opportunities, challenges and research prospects of inter-cloud computing[J]. Communications of the CCF, 2017, 13(3): 30−34 (in Chinese)
[2] Srinivasan A, Quadir M A, Vijayakumar V. Era of cloud computing: A new insight to hybrid cloud[J]. Procedia Computer Science, 2015, 50: 42−51 doi: 10.1016/j.procs.2015.04.059
[3] Linthicum D S. Emerging hybrid cloud patterns[J]. IEEE Cloud Computing, 2016, 3(1): 88−91 doi: 10.1109/MCC.2016.22
[4] Chauhan S S, Pilli E S, Joshi R C. A broker based framework for federated cloud environment[C/OL] //Proc of 2016 Int Conf on Emerging Trends in Communication Technologies (ETCT). Piscataway, NJ: IEEE, 2016 [2021-06-15]. https://ieeexplore.ieee.org/abstract/document/7882979
[5] Petcu D. Multi-cloud: Expectations and current approaches[C] //Proc of 2013 Int Workshop on Multi-Cloud Applications and Federated Clouds. New York: ACM, 2013: 1−6
[6] IDC, Inc. The content of hybrid architecture continues to enrich, and cloud management software has a lot to offer [EB/OL]. (2020-05-31) [2021-06-11]. https://www.idc.com/getdoc.jsp?containerId=prCHC46448320
[7] Armbrust M, Fox A, Griffith R, et al. Above the clouds: A Berkeley view of cloud computing[R]. Berkeley: University of California, 2009
[8] Armbrust M, Fox A, Griffith R, et al. A view of cloud computing[J]. Communications of the ACM, 2010, 53(4): 50−58 doi: 10.1145/1721654.1721672
[9] Toosi A N, Calheiros R N, Buyya R. Interconnected cloud computing environments: Challenges, taxonomy, and survey[J]. ACM Computing Surveys , 2014, 47(1): 1-47
[10] Houidi I, Mechtri M, Louati W, et al. Cloud service delivery across multiple cloud platforms[C] //Proc of 2011 IEEE Int Conf on Services Computing. Piscataway, NJ: IEEE, 2011: 741−742
[11] Ferrer A J, Hernández F, Tordsson J, et al. OPTIMIS: A holistic approach to cloud service provisioning[J]. Future Generation Computer Systems, 2012, 28(1): 66−77 doi: 10.1016/j.future.2011.05.022
[12] Grozev N, Buyya R. Inter-Cloud architectures and application brokering: Taxonomy and survey[J]. Software: Practice and Experience, 2014, 44(3): 369−390 doi: 10.1002/spe.2168
[13] Mell P, Grance T. The NIST definition of cloud computing [EB/OL]. (2011-09-01)[2021-06-15]. https://csrc.nist.gov/publications/detail/sp/800-145/final
[14] Bessani A, Kapitza R, Petcu D, et al. A look to the old-world_sky: EU-funded dependability cloud computing research[J]. ACM SIGOPS Operating Systems Review, 2012, 46(2): 43−56 doi: 10.1145/2331576.2331584
[15] Celesti A, Tusa F, Villari M, et al. How to enhance cloud architectures to enable cross-federation[C] //Proc of the 3rd Int Conf on Cloud Computing. Piscataway, NJ: IEEE, 2010: 337−345
[16] Brikman Y. Terraform: Up & Running: Writing Infrastructure as Code[M]. Sebastopol: O'Reilly Media, 2019
[17] Cuadrado F, Navas A, Duenas J C, et al. Research challenges for cross-cloud applications[C] //Proc of 2014 IEEE Conf on Computer Communications Workshops (INFOCOM WKSHPS). Piscataway, NJ: IEEE, 2014: 19−24
[18] Wang Huaimin, Shi Peichang, Zhang Yiming. Jointcloud: A cross-cloud cooperation architecture for integrated internet service customization[C] //Proc of the 37th Int Conf on Distributed Computing Systems (ICDCS). Piscataway, NJ: IEEE, 2017: 1846−1855
[19] 史佩昌,尹浩,沃天宇,等. 软件定义的云际计算基础理论和方法研究进展[J]. 中国基础科学,2019,21(6):54−60 doi: 10.3969/j.issn.1009-2412.2019.06.08 Shi Peichang, Yin Hao, Wo Tianyu, et al. Research progress on the basic theory and method of the software-defined jointcloud computing[J]. China Basic Science, 2019, 21(6): 54−60 (in Chinese) doi: 10.3969/j.issn.1009-2412.2019.06.08
[20] Jena T, Mohanty J R. GA-based customer-conscious resource allocation and task scheduling in multi-cloud computing[J]. Arabian Journal for Science and Engineering, 2018, 43(8): 4115−4130
[21] 田倬璟,黄震春,张益农. 云计算环境任务调度方法研究综述[J]. 计算机工程与应用,2021,57(2):1−11 doi: 10.3778/j.issn.1002-8331.2006-0259 Tian Zhuojing, Huang Zhenchun, Zhang Yinong. Review of task scheduling methods in cloud computing environment[J]. Computer Engineering and Applications, 2021, 57(2): 1−11 (in Chinese) doi: 10.3778/j.issn.1002-8331.2006-0259
[22] 马小晋,饶国宾,许华虎. 云计算中任务调度研究的调查[J]. 计算机科学,2019,46(3):1−8 doi: 10.11896/j.issn.1002-137X.2019.03.001 Ma Xiaojin, Rao Guobin, Xu Huahu. Research on task scheduling in cloud computing[J]. Computer Science, 2019, 46(3): 1−8 (in Chinese) doi: 10.11896/j.issn.1002-137X.2019.03.001
[23] Mármol F G, Pérez G M. Towards pre-standardization of trust and reputation models for distributed and heterogeneous systems[J]. Computer Standards & Interfaces, 2010, 32(4): 185−196
[24] 胡海洋,刘润华,胡华. 移动云计算环境下任务调度的多目标优化方法[J]. 计算机研究与发展,2017,54(9):1909−1919 doi: 10.7544/issn1000-1239.2017.20160757 Hu Haiyang, Liu Runhua, Hu Hua. Multi-objective optimization for task scheduling in mobile cloud computing[J]. Journal of Computer Research and Development, 2017, 54(9): 1909−1919 (in Chinese) doi: 10.7544/issn1000-1239.2017.20160757
[25] 王亚文, 郭云飞, 刘文彦, 等. 面向云工作流安全的任务调度方法[J]. 计算机研究与发展, 2018, 55(6): 66-75 Wang Yawen, Guo Yunfei, Liu Wenyan, et al. A task scheduling method for cloud workflow security[J]. Journal of Computer Research and Development, 2018, 55(6): 66-75(in Chinese)
[26] Liu Juefu, Liu Peng. The research of load imbalance based on min-min in grid[C/OL] //Proc of 2010 Int Conf on Computer Design and Applications. Piscataway, NJ: IEEE, 2010 [2021-06-17]. https://ieeexplore.ieee.org/abstract/document/5541399
[27] Etminani K, Naghibzadeh M. A min-min max-min selective algorithm for grid task scheduling[C/OL] //Proc of the 3rd IEEE/IFIP Int Conf in Central Asia on Internet. Piscataway, NJ: IEEE, 2007 [2021-06-17]. https://ieeexplore.ieee.org/abstract/document/4401694
[28] Dorigo M, Caro G D. Ant colony optimization: A new meta-heuristic[C] //Proc of 1999 Congress on Evolutionary Computation. Piscataway, NJ: IEEE, 1999: 1470−1477
[29] Dorigo M, Stützle T. The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances[M]. Berlin: Springer, 2003: 250−285
[30] Bratton D, Kennedy J. Defining a standard for particle swarm optimization[C] //Proc of 2007 IEEE Swarm Intelligence Symp. Piscataway, NJ: IEEE, 2007: 120−127
[31] Poli R, Kennedy J, Blackwell T. Particle swarm optimization[J]. Swarm Intelligence, 2007, 1(1): 33−57 doi: 10.1007/s11721-007-0002-0
[32] 高海兵,周驰,高亮. 广义粒子群优化模型[J]. 计算机学报,2005,28(12):1980−1987 doi: 10.3321/j.issn:0254-4164.2005.12.004 Gao Haibing, Zhou Chi, Gao Liang. General particle swarm optimization model[J]. Chinese Journal of Computers, 2005, 28(12): 1980−1987 (in Chinese) doi: 10.3321/j.issn:0254-4164.2005.12.004
[33] Omara F A, Arafa M M. Genetic Algorithms for Task Scheduling Problem[M]. Berlin: Springer, 2009: 479−507
[34] Zhao Chenhong, Zhang Shanshan, Liu Qingfeng et al. Independent tasks scheduling based on genetic algorithm in cloud computing[C/OL] //Proc of the 5th Int Conf on Wireless Communications, Networking and Mobile Computing. Piscataway, NJ: IEEE, 2009 [2021-06-17]. https://ieeexplore.ieee.org/abstract/document/5301850
[35] 陈黄科,祝江汉,朱晓敏,等. 云计算中资源延迟感知的实时任务调度方法[J]. 计算机研究与发展,2017,54(2):446−456 doi: 10.7544/issn1000-1239.2017.20151123 Chen Huangke, Zhu Jianghan, Zhu Xiaomin, et al. Resource-delay-aware scheduling for real-time tasks in clouds[J]. Journal of Computer Research and Development, 2017, 54(2): 446−456 (in Chinese) doi: 10.7544/issn1000-1239.2017.20151123
[36] Shroff P, Watson D W, Flann N S, et al. Genetic simulated annealing for scheduling data-dependent tasks in heterogeneous environments[C] //Proc of the 5th Heterogeneous Computing Workshop (HCW’96). Los Alamitos, CA: IEEE Computer Society 1996, 970: 98−117
[37] Gan Guoning, Huang Tinglei, Gao Shuai. Genetic simulated annealing algorithm for task scheduling based on cloud computing environment[C] //Proc of 2010 Int Conf on Intelligent Computing and Integrated Systems. Piscataway, NJ: IEEE, 2010: 60−63
[38] Glover F. Tabu search-part I[J]. ORSA Journal on Computing, 1989, 1(3): 190−206 doi: 10.1287/ijoc.1.3.190
[39] Liaqat M, Chang V, Gani A, et al. Federated cloud resource management: Review and discussion[J]. Journal of Network and Computer Applications, 2017, 77: 87−105 doi: 10.1016/j.jnca.2016.10.008
[40] Petri I, Diaz-Montes J, Zou Mengsong, et al. Market models for federated clouds[J]. IEEE Transactions on Cloud Computing, 2015, 3(3): 398−410 doi: 10.1109/TCC.2015.2415792
[41] Palmieri F, Buonanno L, Venticinque S, et al. A distributed scheduling framework based on selfish autonomous agents for federated cloud environments[J]. Future Generation Computer Systems, 2013, 29(6): 1461−1472 doi: 10.1016/j.future.2013.01.012
[42] Holt C A, Roth A E. The Nash equilibrium: A perspective[J]. Proceedings of the National Academy of Sciences, 2004, 101(12): 3999−4002 doi: 10.1073/pnas.0308738101
[43] de Oliveira G S S, Ribeiro E, Ferreira D A, et al. Acosched: A scheduling algorithm in a federated cloud infrastructure for bioinformatics applications[C] //Proc of the 7th IEEE Int Conf on Bioinformatics and Biomedicine. Piscataway, NJ: IEEE, 2013: 8−14
[44] Coutinho R C, Drummond L M A, Frota Y. Optimization of a cloud resource management problem from a consumer perspective[C] //Proc of European Conf on Parallel Processing. Berlin: Springer, 2013: 218−227
[45] Coutinho R C, Drummond L M A, Frota Y, et al. Optimizing virtual machine allocation for parallel scientific workflows in federated clouds[J]. Future Generation Computer Systems, 2015, 46: 51−68 doi: 10.1016/j.future.2014.10.009
[46] Van den Bossche R, Vanmechelen K, Broeckhove J. Cost-optimal scheduling in hybrid IaaS clouds for deadline constrained workloads[C] //Proc of the 3rd Int Conf on Cloud Computing. Piscataway, NJ: IEEE, 2010: 228−235
[47] Tejaswi T T, Azharuddin M, Jana P K. A GA based approach for task scheduling in multi-cloud environment[J]. arXiv preprint, arXiv: 1511. 08707, 2015
[48] Lin Bin, Guo Wenzhong, Chen Guolong, et al. Cost-driven scheduling for deadline-constrained workflow on multi-clouds[C] //Proc of the 29th IEEE Int Parallel and Distributed Processing Symp Workshop. Piscataway, NJ: IEEE, 2015: 1191−1198
[49] Heilig L, Lalla-Ruiz E, Voß S. A cloud brokerage approach for solving the resource management problem in multi-cloud environments[J]. Computers & Industrial Engineering, 2016, 95: 16−26
[50] Zhang Miao, Liu Li, Liu Songtao. Genetic algorithm based QoS-aware service composition in multi-cloud[C] //Proc of the 1st IEEE Int Conf on Collaboration and Internet Computing (CIC). Piscataway, NJ: IEEE, 2015: 113−118
[51] Simarro J L L, Moreno-Vozmediano R, Montero R S, et al. Dynamic placement of virtual machines for cost optimization in multi-cloud environments[C] //Proc of the 9th Int Conf on High Performance Computing & Simulation. Piscataway, NJ: IEEE, 2011: 1−7
[52] Li Jiayin, Qiu Meikang, Ming Zhong, et al. Online optimization for scheduling preemptable tasks on IaaS cloud systems[J]. Journal of Parallel and Distributed Computing, 2012, 72(5): 666−677 doi: 10.1016/j.jpdc.2012.02.002
[53] Panda S K, Jana P K. A multi-objective task scheduling algorithm for heterogeneous multi-cloud environment[C] //Proc of 2015 Int Conf on Electronic Design, Computer Networks & Automated Verification (EDCAV). Piscataway, NJ: IEEE, 2015: 82−87
[54] Hu Haiyang, Li Zhongjin, Hu Hua, et al. Multi-objective scheduling for scientific workflow in multicloud environment[J]. Journal of Network and Computer Applications, 2018, 114: 108−122 doi: 10.1016/j.jnca.2018.03.028
[55] Tang Xiaoyong. Reliability-aware cost-efficient scientific workflows scheduling strategy on multi-cloud systems[J/OL]. IEEE Transactions on Cloud Computing, 2021 [2021-06-15]. https://ieeexplore.ieee.org/abstract/document/9349203
[56] Cai Xingjuan, Geng Shaojin, Wu Di, et al. A multi-cloud model based many-objective intelligent algorithm for efficient task scheduling in Internet of things[J]. IEEE Internet of Things Journal, 2020, 8(12): 9645−9653
[57] Wen Zhenyu, Garg S, Aujla G S, et al. Running industrial workflow applications in a software-defined multi-cloud environment using green energy aware scheduling algorithm[J]. IEEE Transactions on Industrial Informatics, 2020, 17(8): 5645−5656
[58] Karaja M, Ennigrou M, Said L B. Budget-constrained dynamic bag-of-tasks scheduling algorithm for heterogeneous multi-cloud environment[C/OL] //Proc of 2020 Int Multi-Conf on Organization of Knowledge and Advanced Technologies (OCTA). Piscataway, NJ: IEEE, 2020 [2021-06-15]. https://ieeexplore.ieee.org/abstract/document/9151737
[59] Grozev N, Buyya R. Multi-cloud provisioning and load distribution for three-tier applications[J]. ACM Transactions on Autonomous and Adaptive Systems, 2014, 9(3): 1-21
[60] Frincu M E, Craciun C. Multi-objective meta-heuristics for scheduling applications with high availability requirements and cost constraints in multi-cloud environments[C] //Proc of the 4th IEEE Int Conf on Utility and Cloud Computing. Piscataway, NJ: IEEE, 2011: 267−274
[61] Kang S, Veeravalli B, Aung K M M. Dynamic scheduling strategy with efficient node availability prediction for handling divisible loads in multi-cloud systems[J]. Journal of Parallel and Distributed Computing, 2018, 113: 1−16 doi: 10.1016/j.jpdc.2017.10.006
[62] Cui Jieqi, Chen Pengfei, Yu Guangba. A learning-based dynamic load balancing approach for microservice systems in multi-cloud environment[C] //Proc of the 26th IEEE Int Conf on Parallel and Distributed Systems (ICPADS). Piscataway, NJ: IEEE, 2020: 334−341
[63] Van den Bossche R, Vanmechelen K, Broeckhove J. Online cost-efficient scheduling of deadline-constrained workloads on hybrid clouds[J]. Future Generation Computer Systems, 2013, 29(4): 973−985 doi: 10.1016/j.future.2012.12.012
[64] Bittencourt L F, Madeira E R M. HCOC: A cost optimization algorithm for workflow scheduling in hybrid clouds[J]. Journal of Internet Services and Applications, 2011, 2(3): 207−227 doi: 10.1007/s13174-011-0032-0
[65] Chopra N, Singh S. Deadline and cost based workflow scheduling in hybrid cloud[C] //Proc of the 2nd Int Conf on Advances in Computing, Communications and Informatics (ICACCI). Piscataway, NJ: IEEE, 2013: 840−846
[66] Zhou Junlong, Wang Tian, Cong Peijin, et al. Cost and makespan-aware workflow scheduling in hybrid clouds[J/OL]. Journal of Systems Architecture, 2019 [2021-06-17]. https://www.sciencedirect.com/science/article/pii/S1383762119302954
[67] Wang Bo, Wang Changhai, Huang Wanwei, et al. Security-aware task scheduling with deadline constraints on heterogeneous hybrid clouds[J]. Journal of Parallel and Distributed Computing, 2021, 153: 15−28 doi: 10.1016/j.jpdc.2021.03.003
[68] Yuan Haitao, Bi Jing, Zhou Mengchu. Temporal task scheduling of multiple delay-constrained applications in green hybrid cloud[J]. IEEE Transactions on Services Computing, 2018, 14(5): 1558−1570
[69] Fan Yuanyuan, Liang Qingzhong, Chen Yunsong, et al. Executing time and cost-aware task scheduling in hybrid cloud using a modified DE algorithm[C] //Proc of the 7th Int Symp on Computational Intelligence and Intelligent Systems. Berlin: Springer, 2015: 74−83
[70] 赵梓铭,刘芳,蔡志平,等. 边缘计算:平台、应用与挑战[J]. 计算机研究与发展,2018,55(2):327−337 doi: 10.7544/issn1000-1239.2018.20170228 Zhao Ziming, Liu Fang, Cai Zhiping, et al. Edge computing: Platforms, applications and challenges[J]. Journal of Computer Research and Development, 2018, 55(2): 327−337 (in Chinese) doi: 10.7544/issn1000-1239.2018.20170228
[71] 苏命峰,王国军,李仁发. 边云协同计算中基于预测的资源部署与任务调度优化[J]. 计算机研究与发展,2021,58(11):2558−2570 doi: 10.7544/issn1000-1239.2021.20200621 Su Mingfeng, Wang Guojun, Li Renfa. Resource deployment with prediction and task scheduling optimization in edge cloud collaborative computing[J]. Journal of Computer Research and Development, 2021, 58(11): 2558−2570 (in Chinese) doi: 10.7544/issn1000-1239.2021.20200621
-
期刊类型引用(6)
1. 徐雪峰,郭广伟,黄余. 改进全卷积神经网络的遥感图像小目标检测. 机械设计与制造. 2024(10): 38-42 . 百度学术
2. 刘雯雯,汪皖燕,程树林. 融合项目热门惩罚因子改进协同过滤推荐方法. 计算机技术与发展. 2023(03): 15-19 . 百度学术
3. 冯勇,刘洋,王嵘冰,徐红艳,张永刚. 面向用户需求的生成对抗网络多样性推荐方法. 小型微型计算机系统. 2023(06): 1192-1197 . 百度学术
4. 冯晨娇,宋鹏,张凯涵,梁吉业. 融合社交网络信息的长尾推荐方法. 模式识别与人工智能. 2022(01): 26-36 . 百度学术
5. 韩迪,陈怡君,廖凯,林坤玲. 推荐系统中的准确性、新颖性和多样性的有效耦合与应用. 南京大学学报(自然科学). 2022(04): 604-614 . 百度学术
6. 甘亚男,耿生玲,郝立. 超贝叶斯图模型及其联结树的构建. 青海师范大学学报(自然科学版). 2021(02): 42-48 . 百度学术
其他类型引用(8)