-
摘要:
将互动直播部署在边缘计算环境中,可以在网络边缘对直播视频进行转码和传输,通过用户附近的边缘服务器提供低延迟的直播服务. 然而,在多边缘服务器、多用户场景下存在着直播用户分配问题,导致直播用户体验质量(quality of experience, QoE)无法得到保证. 为了提高直播用户QoE,需要根据用户的个性化需求合理地分配服务器资源. 首先分析真实数据集,发现大多数用户处于多基站重叠覆盖区域内,并且不同用户的互动需求存在差异;然后根据互动直播的特点提出一种适用于边缘计算场景的用户QoE模型,该模型综合考虑了直播用户的视频质量和互动体验;最后设计一种高效的直播用户分配算法,优化了多边缘服务器重叠覆盖区域内的直播用户QoE. 仿真实验表明,所提出的用户分配策略可为用户提供高码率和低延迟的直播视频,同时能有效降低边缘服务器切换次数和码率抖动,使直播用户QoE相较于其他策略提升超过19%.
Abstract:Deploying interactive live streaming in edge computing environment enable us to offload the transcoding and delivery cost to network edge and provide service with lower latency via the edge servers near the users. However, there is a problem of user allocation in the real complex multi-server and multi-user scenarios, leading to a poor quality of experience (QoE). In order to improve QoE of overlapping coverage areas, it is necessary to select edge servers for individual live streaming users according to their needs and to allocate server resources reasonably. First, the analysis of real-world data sets reveals that most users are in the overlapping coverage area of multiple base stations whose interaction needs vary. Then, a QoE model suitable for edge computing scenarios is proposed according to the analysis, which is based on the characteristics of interactive live streaming and comprehensively considers the interactive and video viewing experience of users. Finally, an efficient live streaming user allocation algorithm is designed to optimize the user QoE in the overlapping coverage area of multiple edge servers. Simulation experiments show that this strategy can provide users with high bit rate and low latency streaming while controlling the edge servers switching and bit rate jitter, thus improving the QoE of users by more than 19% compared with the other strategies.
-
-
表 1 主要符号含义
Table 1 Key Notations Meanings
符号 含义 bv 用户v所观看的主播 mbv 主播bv连接的边缘服务器 Rv 用户v当前时段观看直播的平均码率 M(v) 用户v所在位置附近可连接到的边缘服务器集合 xv,m 用户v和边缘服务器m之间的连接关系 Tbv,mbv 主播bv到边缘服务器mbv之间的直播视频传播延迟 Tmbv,m 边缘服务器mbv到边缘服务器m之间的直播视频传播延迟 Tm,v 边缘服务器m到用户v之间的传播延迟 Fv 用户v的互动频率 Fbv 用户v当前所在直播间内主播的平均互动频率 Iv 用户v的互动需求值 R∗v 用户v所期望的码率 R−v 用户v前一时间段的平均码率 表 2 视频码率参数
Table 2 Video Bit Rate Parameters
分辨率/Px 码率范围/Mbps 平均码率/Mbps 360 0.4~1 0.7 480 0.5~2 1.2 720 1.5~4 1.8 1080 3~6 3.5 表 3 主要参数设置
Table 3 Main Parameters Setting
表 4 实验设置
Table 4 Experimental Setting
边缘服务器数量 用户数量 互动需求值范围 6 50~150 0~2 4~12 100 0~2 6 100 0~1,1~2,2~3 表 5 实验结果对比
Table 5 Comparison of Experimental Results
算法 QoE 平均码率/Mbps 平均延迟/ms 平均互动体验 最优解 37.00 3.5 212.6 2.97 LUA 31.82 2.45 223.9 2.49 -
[1] Cisco V. Cisco visual networking index: Forecast and trends, 2017–2022[EB/OL]. White Paper , 2018[2021-07-10].https://www.docin.com/p-2219756448.html
[2] Jia Qingmin, Xie Renchao, Huang Tao, et al. The collaboration for content delivery and network infrastructures: A survey[J]. IEEE Access, 2017, 5: 18088−18106 doi: 10.1109/ACCESS.2017.2715824
[3] Deng J, Tyson G, Cuadrado F, et al. Internet scale user-generated live video streaming: The twitch case[C] //Proc of Int Conf on Passive and Active Network Measurement. Berlin: Springer, 2017: 60−71
[4] Yan Huan, Lin T, Gao Chuhan, et al. On the understanding of video streaming viewing behaviors across different content providers[J]. IEEE Transactions on Network and Service Management, 2018, 15(99): 444−457
[5] 贾庆民,李子姝,李诚成,等. 基于MEC的移动网络直播视频分发机制研究[J]. 信息通信技术,2018(5):40−44 doi: 10.3969/j.issn.1674-1285.2018.05.006 Jia Qingmin, Li Zishu, Li Chengcheng, et al. Research on live video distribution mechanism of mobile network based on MEC[J]. Information and Communication Technology, 2018(5): 40−44 (in Chinese) doi: 10.3969/j.issn.1674-1285.2018.05.006
[6] Shi Weisong, Cao Jie, Zhang Quan, et al. Edge computing: Vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637−646 doi: 10.1109/JIOT.2016.2579198
[7] 施巍松,张星洲,王一帆,等. 边缘计算:现状与展望[J]. 计算机研究与发展,2019,56(1):69−89 doi: 10.7544/issn1000-1239.2019.20180760 Shi Weisong, Zhang Xingzhou, Wang Yifan, et al. Edge computing: State-of-the-art and future directions[J]. Journal of Computer Research and Development, 2019, 56(1): 69−89 (in Chinese) doi: 10.7544/issn1000-1239.2019.20180760
[8] 张秋平,孙胜,刘敏,等. 面向多边缘设备协作的任务卸载和服务缓存在线联合优化机制[J]. 计算机研究与发展,2021,58(6):1318−1339 doi: 10.7544/issn1000-1239.2021.20201088 Zhang Qiuping, Sun Sheng, Liu Min, et al. Online joint optimization mechanism of task offloading and service caching for multi-edge device collaboration[J]. Journal of Computer Research and Development, 2021, 58(6): 1318−1339 (in Chinese) doi: 10.7544/issn1000-1239.2021.20201088
[9] 李智勇,王琦,陈一凡,等. 车辆边缘计算环境下任务卸载研究综述[J]. 计算机学报,2021,44(5):963−982 doi: 10.11897/SP.J.1016.2021.00963 Li Zhiyong, Wang Qi, Chen Yifan, et al. A survey on task offloading research in vehicular edge computing[J]. Chinese Journal of Computers, 2021, 44(5): 963−982 (in Chinese) doi: 10.11897/SP.J.1016.2021.00963
[10] 张展,张宪琦,左德承,等. 面向边缘计算的目标追踪应用部署策略研究[J]. 软件学报,2020,31(9):2691−2708 doi: 10.13328/j.cnki.jos.005938 Zhang Zhan, Zhang Xianqi, Zuo Decheng, et al. Reserch on target tracking application deployment strategy for edge computing[J]. Journal of Software, 2020, 31(9): 2691−2708 (in Chinese) doi: 10.13328/j.cnki.jos.005938
[11] Pang Haitian, Zhang Cong, Wang Fangxin, et al. Optimizing personalized interaction experience in crowd-interactive livecast: A cloud-edge approach[C] //Proc of the 26th ACM Multimedia Conf. New York: ACM, 2018: 1217−1225
[12] Zhang Zhicai, Wang Ru, Yu F R, et al. QoS aware transcoding for live streaming in edge-clouds aided hetNets: An enhanced actor-critic approach[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 11295−11308 doi: 10.1109/TVT.2019.2942629
[13] Ge Chang, Wang Ning, Chai W, et al. QoE-assured 4K HTTP live streaming via transient segment holding at mobile edge[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(8): 1816−1830 doi: 10.1109/JSAC.2018.2845000
[14] Hu Xinjue, Quan Wei, Guo Tao, et al. Mobile edge assisted live streaming system for omnidirectional video[J]. Mobile Information Systems, 2019, 2019(9): 1−15
[15] Hu Yunchao, Patel M, Sabella D, et al. Mobile edge computing—A key technology towards 5G[J]. ETSI White Paper, 2015, 11: 1−16
[16] He Qiang, Cui Guangming, Zhang Xuyun, et al. A game-theoretical approach for user allocation in edge computing environment[J]. IEEE Transactions on Parallel and Distributed Systems, 2019, 31(3): 515−529
[17] Peng Qinglan, Xia Yunni, Feng Zeng, et al. Mobility-aware and migration-enabled online edge user allocation in mobile edge computing[C] //Proc of 2019 IEEE Int Conf on Web Services. Piscataway, NJ: IEEE, 2019: 91−98
[18] Wang Ziyi, Cui Yong, Hu Xiaoyu, et al. MultiLive: Adaptive bitrate control for low-delay multi-party interactive live streaming[C] //Proc of IEEE Conf on Computer Communications. Piscataway, NJ: IEEE, 2020: 1093−1102
[19] Liu Junquan, Zhang Weizhan, Huang Shouqin, et al. QoE-driven HAS live video channel placement in the media cloud[J]. IEEE Transactions on Multimedia, 2020, 23: 1530−1541
[20] Gao Bin, Zhou Zhi, Liu Fangming, et al. Winning at the starting line: Joint network selection and service placement for mobile edge computing[C] //Proc of IEEE Conf on Computer Communications. Piscataway, NJ: IEEE, 2019: 1459−1467
[21] Jiang Junchen, Das R, Ananthanarayanan G, et al. Via: Improving internet telephony call quality using predictive relay selection[C] //Proc of the 29th ACM SIGCOMM Conf. New York: ACM, 2016: 286−299
[22] 博客园. 实时音视频互动系列: 又拍云UTUN网络详解[EB/OL]. 2017[2021-07-14].https://www.cnblogs.com/upyun/p/7169392.html Cnblogs. Real time audio and video interactive series: Detailed explanation of cloud UTUN network [EB/OL]. 2017[2021-07-14].https://www.cnblogs.com/upyun/p/7169392.html (in Chinese)
[23] Zhang Weiwen, Wen Yonggang, Chen Zhenzhong , et al. QoE-driven cache management for HTTP adaptive bit rate (ABR) streaming over wireless networks[C] //Proc of 2012 IEEE Global Communications Conf. Piscataway, NJ: IEEE, 2012: 1951−1956
[24] Wang Xiaodong, Tian Ye, Lan Rongheng, et al. Beyond the watching: Understanding viewer interactions in crowdsourced live video broadcasting services[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(11): 3454−3468 doi: 10.1109/TCSVT.2018.2877694
[25] He Qiyun, Liu Jiangchuan, Wang Chonggang, et al. Coping with heterogeneous video contributors and viewers in crowdsourced live streaming: A cloud-based approach[J]. IEEE Transactions on Multimedia, 2016, 18(5): 916−928 doi: 10.1109/TMM.2016.2544698
-
期刊类型引用(7)
1. 张淑芬,张宏扬,任志强,陈学斌. 联邦学习的公平性综述. 计算机应用. 2025(01): 1-14 . 百度学术
2. 朱智韬,司世景,王健宗,程宁,孔令炜,黄章成,肖京. 联邦学习的公平性研究综述. 大数据. 2024(01): 62-85 . 百度学术
3. 李锦辉,吴毓峰,余涛,潘振宁. 数据孤岛下基于联邦学习的用户电价响应刻画及其应用. 电力系统保护与控制. 2024(06): 164-176 . 百度学术
4. 刘新,刘冬兰,付婷,王勇,常英贤,姚洪磊,罗昕,王睿,张昊. 基于联邦学习的时间序列预测算法. 山东大学学报(工学版). 2024(03): 55-63 . 百度学术
5. 赵泽华,梁美玉,薛哲,李昂,张珉. 基于数据质量评估的高效强化联邦学习节点动态采样优化. 智能系统学报. 2024(06): 1552-1561 . 百度学术
6. 杨秀清,彭长根,刘海,丁红发,汤寒林. 基于数据质量评估的公平联邦学习方案. 计算机与数字工程. 2022(06): 1278-1285 . 百度学术
7. 黎志鹏. 高可靠的联邦学习在图神经网络上的聚合方法. 工业控制计算机. 2022(10): 85-87+90 . 百度学术
其他类型引用(10)