• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

压缩感知中迂回式匹配追踪算法

裴廷睿, 杨术, 李哲涛, 谢井雄

裴廷睿, 杨术, 李哲涛, 谢井雄. 压缩感知中迂回式匹配追踪算法[J]. 计算机研究与发展, 2014, 51(9): 2101-2107. DOI: 10.7544/issn1000-1239.2014.20131148
引用本文: 裴廷睿, 杨术, 李哲涛, 谢井雄. 压缩感知中迂回式匹配追踪算法[J]. 计算机研究与发展, 2014, 51(9): 2101-2107. DOI: 10.7544/issn1000-1239.2014.20131148
Pei Tingrui, Yang Shu, Li Zhetao, Xie Jingxiong. Detouring Matching Pursuit Algorithm in Compressed Sensing[J]. Journal of Computer Research and Development, 2014, 51(9): 2101-2107. DOI: 10.7544/issn1000-1239.2014.20131148
Citation: Pei Tingrui, Yang Shu, Li Zhetao, Xie Jingxiong. Detouring Matching Pursuit Algorithm in Compressed Sensing[J]. Journal of Computer Research and Development, 2014, 51(9): 2101-2107. DOI: 10.7544/issn1000-1239.2014.20131148
裴廷睿, 杨术, 李哲涛, 谢井雄. 压缩感知中迂回式匹配追踪算法[J]. 计算机研究与发展, 2014, 51(9): 2101-2107. CSTR: 32373.14.issn1000-1239.2014.20131148
引用本文: 裴廷睿, 杨术, 李哲涛, 谢井雄. 压缩感知中迂回式匹配追踪算法[J]. 计算机研究与发展, 2014, 51(9): 2101-2107. CSTR: 32373.14.issn1000-1239.2014.20131148
Pei Tingrui, Yang Shu, Li Zhetao, Xie Jingxiong. Detouring Matching Pursuit Algorithm in Compressed Sensing[J]. Journal of Computer Research and Development, 2014, 51(9): 2101-2107. CSTR: 32373.14.issn1000-1239.2014.20131148
Citation: Pei Tingrui, Yang Shu, Li Zhetao, Xie Jingxiong. Detouring Matching Pursuit Algorithm in Compressed Sensing[J]. Journal of Computer Research and Development, 2014, 51(9): 2101-2107. CSTR: 32373.14.issn1000-1239.2014.20131148

压缩感知中迂回式匹配追踪算法

基金项目: 国家自然科学基金项目(61372049,61379115,61100215,61311140261,61070180);湖南省自然科学基金项目(13JJ8006,12JJ9021);湖南省科技厅科技计划项目(2011GK3200);湖南省重点学科建设项目
详细信息
  • 中图分类号: TP391

Detouring Matching Pursuit Algorithm in Compressed Sensing

  • 摘要: 迂回式匹配追踪(detouring matching pursuit, DMP)是一种计算复杂度低、准确率高、对传感矩阵列相关性要求低的贪婪重构稀疏信号算法.DMP中子内积逆和系数矩阵递增递减核心式被提出并证明,DMP利用子内积逆和系数矩阵减少残差误差变化量的计算量,达到降低计算复杂度的目的.另外,DMP采用先逐个最优缩减、后逐个最优扩增假定支撑集元素的方法提高重构准确率和扩大重构稀疏信号的稀疏度范围.DMP算法复杂度分析表明,DMP算法中获取、缩减和扩增假定支撑集的复杂度分别为O(K2N),O(b(K-b)N)和O(b(K-b)N).加权间接重构0-1稀疏信号实验结果表明,对于稀疏度为M/2的0-1稀疏信号,DMP、逐步贪婪追踪(greedy pursuit algorithm, GPA)、子空间追踪(subspace pursuit, SP)、压缩采样追踪(compressive sampling matching pursuit, CoSaMP)、正交匹配追踪(orthogonal matching pursuit, OMP)的重构准确率分别为99%,65%,0%,0%和13%.非零值服从正态分布的稀疏信号实验结果也表明DMP的重构准确率优势显著.
    Abstract: Detouring matching pursuit (DMP) is a greedy algorithm of reconstructive sparse signals with low computational complexity, high accuracy and low column-correlation demand for sensing matrix. The increasing and deceasing formulas of the submatrix's inner-product and the coefficient matrix in the DMP are put forward and proved. By using the inverse of submatrix's inner-product and the coefficient matrix, DMP could reduce the amount of calculation of residual error's variable quantity and obtain light computation complexity in the end. In addition, by using the method of decreasing firstly, and then increasing the element of the assumed support set one by one optimally, DMP could improve the reconstructive accuracy and broaden the range of sparsity of reconstructing the sparse signal. The analysis of algorithmic complexity shows that the algorithmic complexity of getting, deceasing and increasing the assumed support set is O(K2N), O(b(K-b)N) and O(b(K-b)N), respectively. The experiment of indirect reconstructive weighted 0-1 sparse signal shows the reconstructive accuracy of the DMP, greedy pursuit algorithm (GPA), subspace pursuit (SP), compressive sampling matching pursuit (CoSaMP) and orthogonal matching pursuit (OMP) are 99%, 65%, 0%, 0% and 13% separately for 0-1 sparse signal with M/2 sparsity. The experiments of sparse signals in which the non-zero values obey normal distribution also show the reconstruction accuracy of DMP has obvious superiority.
  • 期刊类型引用(8)

    1. 袁振,侯玉亮,杜宇慧. 面向脑核磁共振识别运动任务的门控循环单元方法. 中国图象图形学报. 2023(02): 589-600 . 百度学术
    2. 姚志武,侯丽娜,文茂华. 基于LSTM算法的大坝坝体渗透压力预测. 水利建设与管理. 2023(08): 54-59 . 百度学术
    3. 潘丹,林灵婷,翁凌雯,李棋,常尧. 基于时空双分支网络的行为检测与识别技术研究. 电子设计工程. 2023(18): 191-195 . 百度学术
    4. 赵佳佳,刘磊. 鱼类集群运动的注意力模型研究. 软件导刊. 2022(06): 36-40 . 百度学术
    5. 郭勇,赵康,潘力. 结合改进Bi-LSTM和CNN的文本情感分析. 信息技术. 2021(02): 50-55 . 百度学术
    6. 高瑞,郝乐,刘宝,文静怡,陈宇航. 基于改进ResNet网络的井下钻杆计数方法. 工矿自动化. 2020(10): 32-37 . 百度学术
    7. 许春冬,徐琅,周滨,凌贤鹏. 单通道语音增强技术的研究现状与发展趋势. 江西理工大学学报. 2020(05): 55-64 . 百度学术
    8. 何永勃,李明伟. 基于循环神经网络的飞机货舱火灾快速识别算法. 消防科学与技术. 2020(11): 1490-1494 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  1820
  • HTML全文浏览量:  0
  • PDF下载量:  3450
  • 被引次数: 22
出版历程
  • 发布日期:  2014-08-31

目录

    /

    返回文章
    返回