• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于深度学习的作曲家分类问题

胡振, 傅昆, 张长水

胡振, 傅昆, 张长水. 基于深度学习的作曲家分类问题[J]. 计算机研究与发展, 2014, 51(9): 1945-1954. DOI: 10.7544/issn1000-1239.2014.20140189
引用本文: 胡振, 傅昆, 张长水. 基于深度学习的作曲家分类问题[J]. 计算机研究与发展, 2014, 51(9): 1945-1954. DOI: 10.7544/issn1000-1239.2014.20140189
Hu Zhen, Fu Kun, Zhang Changshui. Audio Classical Composer Identification by Deep Neural Network[J]. Journal of Computer Research and Development, 2014, 51(9): 1945-1954. DOI: 10.7544/issn1000-1239.2014.20140189
Citation: Hu Zhen, Fu Kun, Zhang Changshui. Audio Classical Composer Identification by Deep Neural Network[J]. Journal of Computer Research and Development, 2014, 51(9): 1945-1954. DOI: 10.7544/issn1000-1239.2014.20140189
胡振, 傅昆, 张长水. 基于深度学习的作曲家分类问题[J]. 计算机研究与发展, 2014, 51(9): 1945-1954. CSTR: 32373.14.issn1000-1239.2014.20140189
引用本文: 胡振, 傅昆, 张长水. 基于深度学习的作曲家分类问题[J]. 计算机研究与发展, 2014, 51(9): 1945-1954. CSTR: 32373.14.issn1000-1239.2014.20140189
Hu Zhen, Fu Kun, Zhang Changshui. Audio Classical Composer Identification by Deep Neural Network[J]. Journal of Computer Research and Development, 2014, 51(9): 1945-1954. CSTR: 32373.14.issn1000-1239.2014.20140189
Citation: Hu Zhen, Fu Kun, Zhang Changshui. Audio Classical Composer Identification by Deep Neural Network[J]. Journal of Computer Research and Development, 2014, 51(9): 1945-1954. CSTR: 32373.14.issn1000-1239.2014.20140189

基于深度学习的作曲家分类问题

基金项目: 国家“九七三”重点基础研究发展计划基金项目(2013CB329503);北京市教委科技发展计划重点项目(KZ201210005007)
详细信息
  • 中图分类号: TP181

Audio Classical Composer Identification by Deep Neural Network

  • 摘要: 在音乐信息检索领域,作曲家分类是一个十分重要的问题,这一问题的目标是通过音频数据来识别相应的作曲家信息.传统的分类算法都是通过提取复杂的特征来进行分类的,而深层神经网络在特征学习上具有比较强的能力,因此提出用深层神经网络来解决这一问题.为了结合不同深层神经网络模型的优点,设计了一种混合模型,该模型基于深度置信网络(deep belief network, DBN)和级联去噪自编码器(stacked denoising autoencoder, SDA),可以较好地解决作曲家分类问题.实验表明,该模型取得了76.26%的正确率,这一结果比单纯用某一种模型搭建的深层神经网络以及支持向量机要好.和图像数据类似,人脑在提取音乐特征也是分层的,每一层对信号的处理不一样,因此混合模型在解决作曲家分类问题上具有一定的优势.
    Abstract: Music is a kind of signal that has hierarchical structure. In music information retrieval (MIR) area, higher level features, such as emotion and genre, are typically extracted based on lower level features such as pitch and spectrum energy. Deep neural networks have good capacity of hierarchical feature learning, which indicates that deep learning is potentially to obtain good performance on music dataset. Audio classical composer identification (ACC) is an important problem in MIR which aims at identifying the composer for audio classical music clips. In this work, a hybrid model based on deep belief network (DBN) and stacked denoising autoencoder (SDA) is built to identify the composer from audio signal. The model get an accuracy of 76.26% in the testing data set which is better than some thoroughbred models and shallow models. After dimensionally reduced by linear discriminant analysis (LDA) it is also clear that the samples from different classes become farther away from each other when being transformed by more layers in our model. By comparing models in different sizes we give some empirical instruction for ACC problem. Similar to image, music features are hierarchical too and different parts of our brain handle signals differently. So we propose a hybrid model and our results encourage us to believe that our proposed model makes sense in some applications. During the experiments, we also find some practical guides for choosing network parameters. For example, number of neurons in the first hidden layer should be approximately 3 times to the dimension of input data.
  • 期刊类型引用(8)

    1. 郝志刚,秦丽. 基于多属性综合评价的食品安全标准引用网络重要节点发现方法. 计算机应用. 2022(04): 1178-1185 . 百度学术
    2. 贾慧娟,刘园,史爱静,张霄宏. 一种基于标签传播的重叠社区发现算法. 小型微型计算机系统. 2022(04): 773-778 . 百度学术
    3. 刘海姣,马慧芳,赵琪琪,李志欣. 融合用户兴趣偏好与影响力的目标社区发现. 计算机研究与发展. 2021(01): 70-82 . 本站查看
    4. 张中军,于来行,李润川. 基于链路结构和转发行为的微博社交网络重叠社区划分方法. 郑州大学学报(理学版). 2021(04): 69-76 . 百度学术
    5. 丁建立,邵酉辰. 基于成对约束的多标签传播重叠社区发现方法. 计算机工程与设计. 2020(03): 689-694 . 百度学术
    6. 赵霞,张泽华,张晨威,李娴. RGNE:粗糙粒化的网络嵌入式重叠社区发现方法. 计算机研究与发展. 2020(06): 1302-1311 . 本站查看
    7. 曾绍华,唐文密,詹林庆,黄秀芬. 基于自适应密度峰值聚类的野外紫色土彩色图像分割. 农业工程学报. 2019(19): 200-208 . 百度学术
    8. 林胜青. 基于内容流行度的网络内部缓存智能分布方法. 咸阳师范学院学报. 2019(06): 37-41 . 百度学术

    其他类型引用(20)

计量
  • 文章访问数:  1934
  • HTML全文浏览量:  3
  • PDF下载量:  2061
  • 被引次数: 28
出版历程
  • 发布日期:  2014-08-31

目录

    /

    返回文章
    返回