• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于输出域的测试用例自动生成方法研究

尤枫, 赵瑞莲, 吕珊珊

尤枫, 赵瑞莲, 吕珊珊. 基于输出域的测试用例自动生成方法研究[J]. 计算机研究与发展, 2016, 53(3): 541-549. DOI: 10.7544/issn1000-1239.2016.20148045
引用本文: 尤枫, 赵瑞莲, 吕珊珊. 基于输出域的测试用例自动生成方法研究[J]. 计算机研究与发展, 2016, 53(3): 541-549. DOI: 10.7544/issn1000-1239.2016.20148045
You Feng, Zhao Ruilian, Lü Shanshan. Output Domain Based Automatic Test Case Generation[J]. Journal of Computer Research and Development, 2016, 53(3): 541-549. DOI: 10.7544/issn1000-1239.2016.20148045
Citation: You Feng, Zhao Ruilian, Lü Shanshan. Output Domain Based Automatic Test Case Generation[J]. Journal of Computer Research and Development, 2016, 53(3): 541-549. DOI: 10.7544/issn1000-1239.2016.20148045
尤枫, 赵瑞莲, 吕珊珊. 基于输出域的测试用例自动生成方法研究[J]. 计算机研究与发展, 2016, 53(3): 541-549. CSTR: 32373.14.issn1000-1239.2016.20148045
引用本文: 尤枫, 赵瑞莲, 吕珊珊. 基于输出域的测试用例自动生成方法研究[J]. 计算机研究与发展, 2016, 53(3): 541-549. CSTR: 32373.14.issn1000-1239.2016.20148045
You Feng, Zhao Ruilian, Lü Shanshan. Output Domain Based Automatic Test Case Generation[J]. Journal of Computer Research and Development, 2016, 53(3): 541-549. CSTR: 32373.14.issn1000-1239.2016.20148045
Citation: You Feng, Zhao Ruilian, Lü Shanshan. Output Domain Based Automatic Test Case Generation[J]. Journal of Computer Research and Development, 2016, 53(3): 541-549. CSTR: 32373.14.issn1000-1239.2016.20148045

基于输出域的测试用例自动生成方法研究

基金项目: 国家自然科学基金项目(61472025,61170082)
详细信息
  • 中图分类号: TP311.5

Output Domain Based Automatic Test Case Generation

  • 摘要: 对大多数软件,很难根据规格说明自动产生期望的输出.而对于某些软件,输出域存在许多值得关注的检测点,适合于从输出域出发开发测试用例.但对于给定的输出,自动生成相应的输入也较为困难.提出了一种基于输出域的测试用例自动生成方法,首先利用BP神经网络构建被测软件的功能模型,然后在被测软件的功能模型上,对于给定的输出,利用遗传算法搜索相应的输入,实现基于输出域的测试用例自动生成.同时,对遗传算法进行了改进,提出了一种新的交叉算子和变异算子,以提高遗传算法生成测试用例效率,并在容错软件RSDIMU子模块和3个常用软件上进行了模型构建及测试生成实验.实验结果表明,利用遗传算法实现基于输出域的测试用例自动生成方法是行之有效的,改进的遗传算法能够提高测试生成的效率和成功率.
    Abstract: For most software systems it is very hard to obtain expected output automatically on the basis of specifications. However, there exist many notable detection points in output domain of some software, so it may be more suitable to develop test cases from output domain than from input. In addition, even if an output is given, it is also difficult to find its input automatically. Therefore in this paper, we present an output domain based automatic test case generation method. At first, a back propagation neural network is used to create a model that can be taken as a function substitute for the software under test, and then according to the created function model, genetic algorithms are employed to search the corresponding inputs for given outputs. In order to improve the effectiveness of test case generation, a new crossover operation and a mutation operation are introduced in our genetic algorithm. Moreover, a number of experiments have been conducted on test generation based on the created function models over the fault tolerant software RSDIMU and three common used software. The experimental results show that the approach is promising and effective, and our genetic algorithm can distinctly enhance the efficiency and successful ratio to test case generation from output domains.
  • 期刊类型引用(6)

    1. 牛惊雷,牛易航. 基于社会网络分析法的洗钱犯罪数据挖掘侦查技术的改进. 贵州警察学院学报. 2024(06): 71-78 . 百度学术
    2. 蒋忠珍,何景明. 基于在线评论的高端酱香型白酒消费特征分析——以飞天茅台酒在京东上的在线评论为例. 中国酿造. 2021(10): 235-238 . 百度学术
    3. 徐勇,汪倩,武雅利,李晓宇,张心蕊. 用户画像研究的文献计量分析. 榆林学院学报. 2020(02): 4-9 . 百度学术
    4. 李贞,吴勇,耿海军. 基于重引力搜索链接预测和评分传播的大数据推荐系统. 计算机应用与软件. 2020(02): 39-47 . 百度学术
    5. 张艳红,俞龙. 基于噪声检测修正和神经网络的稀疏数据推荐算法. 计算机应用与软件. 2020(08): 274-281 . 百度学术
    6. 汪倩,徐勇,张心蕊,李晓宇. 用户画像研究进展综述. 现代计算机. 2020(24): 60-63 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  1200
  • HTML全文浏览量:  0
  • PDF下载量:  533
  • 被引次数: 12
出版历程
  • 发布日期:  2016-02-29

目录

    /

    返回文章
    返回