• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于词典优化与空间一致性度量的目标检索

赵永威, 周苑, 李弼程

赵永威, 周苑, 李弼程. 基于词典优化与空间一致性度量的目标检索[J]. 计算机研究与发展, 2016, 53(5): 1043-1052. DOI: 10.7544/issn1000-1239.2016.20150070
引用本文: 赵永威, 周苑, 李弼程. 基于词典优化与空间一致性度量的目标检索[J]. 计算机研究与发展, 2016, 53(5): 1043-1052. DOI: 10.7544/issn1000-1239.2016.20150070
Zhao Yongwei, Zhou Yuan, Li Bicheng. Object Retrieval Based on Enhanced Dictionary and Spatially-Constrained Similarity Measurement[J]. Journal of Computer Research and Development, 2016, 53(5): 1043-1052. DOI: 10.7544/issn1000-1239.2016.20150070
Citation: Zhao Yongwei, Zhou Yuan, Li Bicheng. Object Retrieval Based on Enhanced Dictionary and Spatially-Constrained Similarity Measurement[J]. Journal of Computer Research and Development, 2016, 53(5): 1043-1052. DOI: 10.7544/issn1000-1239.2016.20150070
赵永威, 周苑, 李弼程. 基于词典优化与空间一致性度量的目标检索[J]. 计算机研究与发展, 2016, 53(5): 1043-1052. CSTR: 32373.14.issn1000-1239.2016.20150070
引用本文: 赵永威, 周苑, 李弼程. 基于词典优化与空间一致性度量的目标检索[J]. 计算机研究与发展, 2016, 53(5): 1043-1052. CSTR: 32373.14.issn1000-1239.2016.20150070
Zhao Yongwei, Zhou Yuan, Li Bicheng. Object Retrieval Based on Enhanced Dictionary and Spatially-Constrained Similarity Measurement[J]. Journal of Computer Research and Development, 2016, 53(5): 1043-1052. CSTR: 32373.14.issn1000-1239.2016.20150070
Citation: Zhao Yongwei, Zhou Yuan, Li Bicheng. Object Retrieval Based on Enhanced Dictionary and Spatially-Constrained Similarity Measurement[J]. Journal of Computer Research and Development, 2016, 53(5): 1043-1052. CSTR: 32373.14.issn1000-1239.2016.20150070

基于词典优化与空间一致性度量的目标检索

基金项目: 国家自然科学基金项目(60872142,61301232)
详细信息
  • 中图分类号: TP391

Object Retrieval Based on Enhanced Dictionary and Spatially-Constrained Similarity Measurement

  • 摘要: 基于视觉词典模型(bag of visual words model, BoVWM)的目标检索存在时间效率低、词典区分性不强的问题,以及由于空间信息的缺失及量化误差等导致的视觉语义分辨力不强的问题.针对这些问题,提出了基于词典优化与空间一致性度量的目标检索方法.首先,该方法引入E\+2LSH(exact Euclidean locality sensitive hashing)过滤图像中的噪声和相似关键点,提高词典生成效率和质量;然后,引入卡方模型(chi-square model, CSM)移除词典中的视觉停用词增强视觉词典的区分性;最后,采用空间一致性度量准则进行目标检索并对初始结果进行K-近邻(K-nearest neighbors, K-NN)重排序.实验结果表明:新方法在一定程度上改善了视觉词典的质量,增强了视觉语义分辨能力,进而有效地提高目标检索性能.
    Abstract: Bag of visual words model based object retrieval methods have several problems, such as low time efficiency, the low distinction of visual words and the weakly visual semantic resolution because of missing spatial information and quantization error. In this article, an object retrieval method based on enhanced dictionary and spatially-constrained similarity measurement is proposed aiming at the above problems. Firstly, E\+2LSH (exact Euclidean locality sensitive hashing) is used to identify and eliminate the noise key points and similar key points, consequently, the efficiency and quality of visual words are improved; Then, the stop words of dictionary are eliminated by chi-square model (CSM) to improve the distinguish ability of visual dictionary; Finally, the spatially-constrained similarity measurement is introduced to accomplish object retrieval, furthermore, a robust re-ranking method with the K-nearest neighbors of the query for automatically refining the initial search results is introduced. Experimental results indicate that the quality of visual dictionary is enhanced, and the distinguish ability of visual semantic expression is effectively improved and the object retrieval performance is substantially boosted compared with the traditional methods.
  • 期刊类型引用(7)

    1. 崔竞松,张童桐,郭迟,郭文飞. 基于时延特征的网络设备异常检测. 计算机科学. 2023(03): 371-379 . 百度学术
    2. 李雄伟,刘俊延,张阳,陈开颜,刘林云. 基于SAE-OCSVM的伪芯片检测研究. 湖南大学学报(自然科学版). 2022(02): 117-124 . 百度学术
    3. 徐俊梅. 基于物联网的移动网络交互行为异常检测. 辽东学院学报(自然科学版). 2021(01): 34-38 . 百度学术
    4. 陈璐,孙亚杰,张立强,陈云. 物联网环境下基于DICE的设备度量方案. 信息网络安全. 2020(04): 21-30 . 百度学术
    5. 徐伟,李佟鸿. 基于浮动域值法的物联网安全协方差盲检测. 计算机仿真. 2020(03): 440-444+457 . 百度学术
    6. 李力恒,孙志勇. 基于数据挖掘技术的可穿戴医疗设备异常自动监测研究. 自动化与仪器仪表. 2020(05): 17-20 . 百度学术
    7. 马峻岩,张颖,李易,王瑾,张特. HA2:层次化的物联网感知设备固件异常分析技术. 计算机工程与应用. 2019(22): 60-68+179 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  1142
  • HTML全文浏览量:  0
  • PDF下载量:  527
  • 被引次数: 8
出版历程
  • 发布日期:  2016-04-30

目录

    /

    返回文章
    返回