Object Retrieval Based on Enhanced Dictionary and Spatially-Constrained Similarity Measurement
-
摘要: 基于视觉词典模型(bag of visual words model, BoVWM)的目标检索存在时间效率低、词典区分性不强的问题,以及由于空间信息的缺失及量化误差等导致的视觉语义分辨力不强的问题.针对这些问题,提出了基于词典优化与空间一致性度量的目标检索方法.首先,该方法引入E\+2LSH(exact Euclidean locality sensitive hashing)过滤图像中的噪声和相似关键点,提高词典生成效率和质量;然后,引入卡方模型(chi-square model, CSM)移除词典中的视觉停用词增强视觉词典的区分性;最后,采用空间一致性度量准则进行目标检索并对初始结果进行K-近邻(K-nearest neighbors, K-NN)重排序.实验结果表明:新方法在一定程度上改善了视觉词典的质量,增强了视觉语义分辨能力,进而有效地提高目标检索性能.
-
关键词:
- 目标检索 /
- 视觉词典模型 /
- 精确欧氏位置敏感哈希 /
- 空间一致性度量 /
- 卡方模型
Abstract: Bag of visual words model based object retrieval methods have several problems, such as low time efficiency, the low distinction of visual words and the weakly visual semantic resolution because of missing spatial information and quantization error. In this article, an object retrieval method based on enhanced dictionary and spatially-constrained similarity measurement is proposed aiming at the above problems. Firstly, E\+2LSH (exact Euclidean locality sensitive hashing) is used to identify and eliminate the noise key points and similar key points, consequently, the efficiency and quality of visual words are improved; Then, the stop words of dictionary are eliminated by chi-square model (CSM) to improve the distinguish ability of visual dictionary; Finally, the spatially-constrained similarity measurement is introduced to accomplish object retrieval, furthermore, a robust re-ranking method with the K-nearest neighbors of the query for automatically refining the initial search results is introduced. Experimental results indicate that the quality of visual dictionary is enhanced, and the distinguish ability of visual semantic expression is effectively improved and the object retrieval performance is substantially boosted compared with the traditional methods. -
-
期刊类型引用(8)
1. 刘金全,张铮,陈自东,曹晟. 一种基于联邦学习参与方的投毒攻击防御方法. 计算机应用研究. 2024(04): 1171-1176 . 百度学术
2. 杨文彬. 基于联邦学习的移动边缘节点计算的数据智能分类问题研究. 自动化与仪器仪表. 2024(06): 19-23 . 百度学术
3. 符太东,李育强. 基于联邦学习算法的复杂网络大数据隐私保护. 计算机仿真. 2024(06): 498-502 . 百度学术
4. 孙静,彭勇刚,倪旖旎,韦巍,蔡田田,习伟. 基于改进联邦学习算法的电力负荷预测方法. 高电压技术. 2024(07): 3039-3049 . 百度学术
5. 乐俊青,谭州勇 ,张迪 ,刘高 ,向涛 ,廖晓峰 . 面向车联网数据持续共享的安全高效联邦学习. 计算机研究与发展. 2024(09): 2199-2212 . 本站查看
6. 孙钰,刘霏霏,李大伟,刘建伟. 联邦学习拜占庭攻击与防御研究综述. 网络空间安全科学学报. 2023(01): 17-37 . 百度学术
7. 康孟珍,王秀娟,李冬,王旭伟,王浩宇,樊梦涵,许钰林,王飞跃. 基于联邦学习的分布式农业组织. 智能科学与技术学报. 2022(02): 288-297 . 百度学术
8. 王文鑫,柳彩云,岳梓岩. 基于联邦学习的工业互联网结构优化. 工业信息安全. 2022(01): 103-107 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 1142
- HTML全文浏览量: 0
- PDF下载量: 527
- 被引次数: 14