• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

移动目标防御技术研究进展

蔡桂林, 王宝生, 王天佐, 罗跃斌, 王小峰, 崔新武

蔡桂林, 王宝生, 王天佐, 罗跃斌, 王小峰, 崔新武. 移动目标防御技术研究进展[J]. 计算机研究与发展, 2016, 53(5): 968-987. DOI: 10.7544/issn1000-1239.2016.20150225
引用本文: 蔡桂林, 王宝生, 王天佐, 罗跃斌, 王小峰, 崔新武. 移动目标防御技术研究进展[J]. 计算机研究与发展, 2016, 53(5): 968-987. DOI: 10.7544/issn1000-1239.2016.20150225
Cai Guilin, Wang Baosheng, Wang Tianzuo, Luo Yuebin, Wang Xiaofeng, Cui Xinwu. Research and Development of Moving Target Defense Technology[J]. Journal of Computer Research and Development, 2016, 53(5): 968-987. DOI: 10.7544/issn1000-1239.2016.20150225
Citation: Cai Guilin, Wang Baosheng, Wang Tianzuo, Luo Yuebin, Wang Xiaofeng, Cui Xinwu. Research and Development of Moving Target Defense Technology[J]. Journal of Computer Research and Development, 2016, 53(5): 968-987. DOI: 10.7544/issn1000-1239.2016.20150225
蔡桂林, 王宝生, 王天佐, 罗跃斌, 王小峰, 崔新武. 移动目标防御技术研究进展[J]. 计算机研究与发展, 2016, 53(5): 968-987. CSTR: 32373.14.issn1000-1239.2016.20150225
引用本文: 蔡桂林, 王宝生, 王天佐, 罗跃斌, 王小峰, 崔新武. 移动目标防御技术研究进展[J]. 计算机研究与发展, 2016, 53(5): 968-987. CSTR: 32373.14.issn1000-1239.2016.20150225
Cai Guilin, Wang Baosheng, Wang Tianzuo, Luo Yuebin, Wang Xiaofeng, Cui Xinwu. Research and Development of Moving Target Defense Technology[J]. Journal of Computer Research and Development, 2016, 53(5): 968-987. CSTR: 32373.14.issn1000-1239.2016.20150225
Citation: Cai Guilin, Wang Baosheng, Wang Tianzuo, Luo Yuebin, Wang Xiaofeng, Cui Xinwu. Research and Development of Moving Target Defense Technology[J]. Journal of Computer Research and Development, 2016, 53(5): 968-987. CSTR: 32373.14.issn1000-1239.2016.20150225

移动目标防御技术研究进展

基金项目: 国家“九七三”重点基础研究发展计划基金项目(2012CB315906);高等学校博士学科点专项科研基金项目(20114307110006)
详细信息
  • 中图分类号: TP393.08

Research and Development of Moving Target Defense Technology

  • 摘要: 易攻难守是当前网络安全面临的核心问题之一.移动目标防御为解决这一问题提供了一种全新思路,其核心思想是通过内部可管理的方式对被保护目标的攻击面实施持续性的动态变换以迷惑攻击者,从而增加攻击者实施成功攻击的代价和复杂度,降低其攻击成功的概率,提高系统弹性和安全性.首先对移动目标防御的基本概念加以介绍,并依据研究内容的不同对已有的研究成果进行分类;然后对每类成果加以描述、分析和总结;最后对当前研究现状进行总结,并对未来研究方向进行了展望.
    Abstract: Nowadays, network configurations are typically deterministic, static, and homogeneous. These features reduce the difficulties for cyber attackers scanning the network to identify specific targets and gather essential information, which gives the attackers asymmetric advantages of building up, launching and spreading attacks. Thus the defenders are always at a passive position, and the existing defense mechanisms and approaches cannot reverse this situation. Moving target defense (MTD) is proposed as a new revolutionary technology to alter the asymmetric situation of attacks and defenses. It keeps moving the attack surface of the protected target through dynamic shifting, which can be controlled and managed by the administrator. In this way, the attack surface exposed to attackers appears chaotic and changes over time. Therefore, the work effort, i.e., the cost and complexity, for the attackers to launch a successful attack, will be greatly increased. As a result, the probability of successful attacks will be decreased, and the resiliency and security of the protected target will be enhanced effectively. In this paper, we firstly introduce the basic concepts of MTD, and classify the related works into categories according to their research field. Then, under each category, we give a detailed description on the existing work, and analyze and summarize them separately. Finally, we present our understandings on MTD, and summarize the current research status, and further discuss the development trends in this field.
  • 期刊类型引用(14)

    1. 孙造诣,许苇婧,徐亮,李宏汀. 调节定向对App用户隐私披露的影响. 心理科学进展. 2023(07): 1160-1171 . 百度学术
    2. 王宏. 基于知识图谱的中外用户隐私研究对比分析. 大学图书情报学刊. 2023(04): 136-145 . 百度学术
    3. 冯晗,伊华伟,李晓会,李锐. 推荐系统的隐私保护研究综述. 计算机科学与探索. 2023(08): 1814-1832 . 百度学术
    4. 李静,赵青杉,高媛. 基于机器学习的大数据隐私非交互式查询研究. 计算机仿真. 2023(08): 334-338 . 百度学术
    5. 刘振,吴宇. 基于区块链的自适应权重趋势感知联邦学习方案. 电子设计工程. 2023(24): 75-80 . 百度学术
    6. 雷可为,王小辉. 基于微信公众平台的景区个性化推荐系统设计. 信息技术. 2022(01): 56-61 . 百度学术
    7. 朱智韬,司世景,王健宗,肖京. 联邦推荐系统综述. 大数据. 2022(04): 105-132 . 百度学术
    8. 张洪磊,李浥东,邬俊,陈乃月,董海荣. 基于隐私保护的联邦推荐算法综述. 自动化学报. 2022(09): 2142-2163 . 百度学术
    9. 胡至洵,杜宇,刘潇月. 基于用户兴趣分类的书籍自动推荐系统设计. 现代电子技术. 2021(06): 58-62 . 百度学术
    10. 马苏杭,龙士工,刘海,彭长根,李思雨. 面向高维数据发布的个性化差分隐私算法. 计算机系统应用. 2021(04): 131-138 . 百度学术
    11. 马黛露丝,朱海萍,田锋,冯沛,陈妍,计湘婷,李玉杰. 一种权衡性能与隐私保护的推荐算法. 西安交通大学学报. 2021(07): 117-123 . 百度学术
    12. 邓翔天,钱海峰. 标准模型下的灵活细粒度授权密文一致性检测方案. 计算机研究与发展. 2021(10): 2222-2237 . 本站查看
    13. 周俊,方国英,吴楠. 联邦学习安全与隐私保护研究综述. 西华大学学报(自然科学版). 2020(04): 9-17 . 百度学术
    14. 周艳榕. 基于个性化特征的电子商务智能推荐系统. 现代电子技术. 2020(19): 155-158+162 . 百度学术

    其他类型引用(26)

计量
  • 文章访问数:  2566
  • HTML全文浏览量:  4
  • PDF下载量:  2055
  • 被引次数: 40
出版历程
  • 发布日期:  2016-04-30

目录

    /

    返回文章
    返回