Research Progress of Recommendation Technology in Location-Based Social Networks
-
摘要: 随着移动互联网技术、定位技术和无线传感技术的飞速发展以及智能手机的不断普及,基于位置的社会化网络及其带来的应用服务应运而生并得到了迅速的发展.位置数据弥合了物理世界和数字世界之间的鸿沟,使得人们能够更深入地了解用户的偏好和行为.针对用户的兴趣所在,为用户提供基于位置的个性化推荐服务,已成为当前基于位置的社会化网络的一项重要服务,得到工业界和学术界的广泛重视,正成为推荐系统和社会化网络研究领域的一个新的研究热点.从推荐对象、推荐方法和评价方法3个方面对基于位置的社会化网络推荐技术进行概括、比较与分析;在此基础上,对这一研究领域未来可能的研究方向进行了总结与展望.
-
关键词:
- 基于位置的社会化网络 /
- 推荐系统 /
- 兴趣点 /
- 异构网络 /
- 社交媒体
Abstract: The rapid development of mobile Internet technology, positioning technology and wireless sensor technology has endowed the smart terminal more powerful features and applications. Location-based social networks (LBSNs) and its services have emerged and advanced rapidly. Location data both bridges the gap between the physical and digital worlds and enables deeper understanding of user preferences and behaviors. The location-based and personalized recommendation service in accordance with users’ interests has become dramatically vital in location-based social networks and has widely received attention in both academia and industry. Currently, it is becoming a new research hotspot in the field of recommendation system and social networks. In this paper, we aim at offering a literature review of the former contributions on this program and exploring the relations within the former achievements. We firstly discuss the new properties and challenges that location brings to recommendation systems for LBSNs. Then, we systematically introduce the location-based social network recommendation service from three aspects: the objective, methodology and the major methods for evaluating. We classify recommendation objectives into four categories: location recommendations, friend & companion recommendations, local expert discovery and activity recommendations. According to the use of data set types, location recommendations and friend & companion recommendations are classified. Finally, we point out the possible research directions of this area in the future and arrive at the conclusion of this survey. -
-
期刊类型引用(20)
1. 徐宁,李静秋,王岚君,刘安安. 时序特性引导下的谣言事件检测方法评测. 南京大学学报(自然科学). 2025(01): 71-82 . 百度学术
2. 张元园,袁嘉霁. 基于社交媒体的谣言检测研究综述. 数据通信. 2024(01): 28-33 . 百度学术
3. 廖劲智,赵和伟,连小童,纪文亮,石海明,赵翔. 基于对比图学习的跨文档虚假信息检测. 计算机科学. 2024(03): 14-19 . 百度学术
4. 凤丽洲,刘馥榕,王友卫. 基于图卷积网络和注意力机制的谣言检测方法. 数据分析与知识发现. 2024(04): 125-136 . 百度学术
5. 王晰巍,孙哲,姜奕冰,李玥琪. 社交媒体网络辟谣回音室效应分析模型及实验研究. 现代情报. 2024(10): 3-17 . 百度学术
6. 朱奕,王根生,金文文,黄学坚,李胜. 基于文本语义增强和评论立场加权的网络谣言检测. 计算机科学与探索. 2024(12): 3311-3323 . 百度学术
7. 甘臣权,付祥,冯庆东,祝清意. 基于公共情感特征压缩与融合的轻量级图文情感分析模型. 计算机研究与发展. 2023(05): 1099-1110 . 本站查看
8. 聂大成,汪明达,刘世钰,杨慧,张翔,邱鸿杰. 在线社会网络虚假信息检测关键技术研究综述. 通信技术. 2023(04): 391-399 . 百度学术
9. 李卓远,李军. 基于对比学习的多模态注意力网络虚假信息检测方法. 中国科技论文. 2023(11): 1192-1197 . 百度学术
10. 强子珊,顾益军. 基于多模态异质图的社交媒体谣言检测模型. 数据分析与知识发现. 2023(11): 68-78 . 百度学术
11. 陈志毅,隋杰. 基于DeepFM和卷积神经网络的集成式多模态谣言检测方法. 计算机科学. 2022(01): 101-107 . 百度学术
12. 陆恒杨,范晨悠,吴小俊. 面向网络社交媒体的少样本新冠谣言检测. 中文信息学报. 2022(01): 135-144+172 . 百度学术
13. 唐樾,马静. 基于增强对抗网络和多模态融合的谣言检测方法. 情报科学. 2022(06): 108-114+131 . 百度学术
14. 王壮,隋杰. 基于多级融合的多模态谣言检测模型. 计算机工程与设计. 2022(06): 1756-1761 . 百度学术
15. 吴诗苑,董庆兴,宋志君,张斌. 社交媒体中错误信息的检测方法研究述评. 情报学报. 2022(06): 651-661 . 百度学术
16. 范伟,刘勇. 基于时空Transformer的社交网络信息传播预测. 计算机研究与发展. 2022(08): 1757-1769 . 本站查看
17. 姜梦函,李邵梅,吴子仪,张建朋. 多模态特征融合的中文谣言检测. 信息工程大学学报. 2022(04): 485-490 . 百度学术
18. 孟佳娜,王晓培,李婷,刘爽,赵迪. 基于对抗神经网络的跨模态谣言检测. 数据分析与知识发现. 2022(12): 32-42 . 百度学术
19. 徐铭达,张子柯,许小可. 基于模体度的社交网络虚假信息传播机制研究. 计算机研究与发展. 2021(07): 1425-1435 . 本站查看
20. 胡斗,卫玲蔚,周薇,淮晓永,韩冀中,虎嵩林. 一种基于多关系传播树的谣言检测方法. 计算机研究与发展. 2021(07): 1395-1411 . 本站查看
其他类型引用(32)
计量
- 文章访问数: 1193
- HTML全文浏览量: 0
- PDF下载量: 754
- 被引次数: 52