• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

一种区分等级的可生存服务功能链映射方法

刘艺, 张红旗, 杨英杰, 常德显

刘艺, 张红旗, 杨英杰, 常德显. 一种区分等级的可生存服务功能链映射方法[J]. 计算机研究与发展, 2018, 55(4): 748-767. DOI: 10.7544/issn1000-1239.2018.20170938
引用本文: 刘艺, 张红旗, 杨英杰, 常德显. 一种区分等级的可生存服务功能链映射方法[J]. 计算机研究与发展, 2018, 55(4): 748-767. DOI: 10.7544/issn1000-1239.2018.20170938
Liu Yi, Zhang Hongqi, Yang Yingjie, Chang Dexian. A Hierarchical Method for Survivable Service Function Chain Embedding[J]. Journal of Computer Research and Development, 2018, 55(4): 748-767. DOI: 10.7544/issn1000-1239.2018.20170938
Citation: Liu Yi, Zhang Hongqi, Yang Yingjie, Chang Dexian. A Hierarchical Method for Survivable Service Function Chain Embedding[J]. Journal of Computer Research and Development, 2018, 55(4): 748-767. DOI: 10.7544/issn1000-1239.2018.20170938
刘艺, 张红旗, 杨英杰, 常德显. 一种区分等级的可生存服务功能链映射方法[J]. 计算机研究与发展, 2018, 55(4): 748-767. CSTR: 32373.14.issn1000-1239.2018.20170938
引用本文: 刘艺, 张红旗, 杨英杰, 常德显. 一种区分等级的可生存服务功能链映射方法[J]. 计算机研究与发展, 2018, 55(4): 748-767. CSTR: 32373.14.issn1000-1239.2018.20170938
Liu Yi, Zhang Hongqi, Yang Yingjie, Chang Dexian. A Hierarchical Method for Survivable Service Function Chain Embedding[J]. Journal of Computer Research and Development, 2018, 55(4): 748-767. CSTR: 32373.14.issn1000-1239.2018.20170938
Citation: Liu Yi, Zhang Hongqi, Yang Yingjie, Chang Dexian. A Hierarchical Method for Survivable Service Function Chain Embedding[J]. Journal of Computer Research and Development, 2018, 55(4): 748-767. CSTR: 32373.14.issn1000-1239.2018.20170938

一种区分等级的可生存服务功能链映射方法

基金项目: 国家“八六三”高技术研究发展计划基金项目(2012AA012704);郑州市科技领军人才项目(131PLJRC644)
详细信息
  • 中图分类号: TP393.08

A Hierarchical Method for Survivable Service Function Chain Embedding

  • 摘要: 针对在底层网络可能发生单点和单链路故障情况下的服务功能链(service function chain, SFC)映射问题,提出一种区分等级的可生存SFC映射方法,为提供重要服务的关键SFC预先分配备用资源,为提供普通服务的普通SFC快速重映射失效部分,从而兼顾提高SFC可生存能力和降低底层网络资源开销的需求.首先,在考虑最小化SFC服务时延的条件下,分别为关键SFC和普通SFC的可生存映射问题建立混合整数线性规划模型.其次,提出2种启发式的模型求解算法,其中,面向关键SFC的主备服务路径构建算法采用贪心思想交替进行节点和链路映射,以减小SFC服务时延,并在主备服务路径之间建立桥接路径,以提高路径切换速度和降低路径切换过程的丢包率;面向普通SFC的失效服务路径重建算法引入最大流问题求解失效节点的最佳重映射位置,以提高成功恢复的失效普通SFC数目,并利用改进的Dijkstra最短路径算法选择时延低的重映射路径.最后,在不同网络条件下实验验证了启发式算法的性能,并且在模拟网络环境中所提可生存SFC映射方法能保证SFC的成功运行率在592%以上.
    Abstract: Aiming at embedding the service function chain (SFC) in substrate network under the condition of single-node or single-link failure, this paper proposes a hierarchical method for survivable SFC embedding. The method takes into account both improving the survivability of SFC and reducing the resource consumption of substrate network. For the key service function chain (KSFC) delivering essential services, it pre-allocates backup resources for possible failures in the future. Meanwhile, for the normal service function chain (NSFC) delivering common services, it quickly re-embeds the failed nodes and links after a failure has occurred. Firstly, taking into account minimizing the service latency of SFC, we provide two mixed integer linear programming (MILP) formulations for the survivable embedding problem of KSFC and NSFC. Secondly, we propose two heuristic algorithms to solve the formulations quickly, namely, the primary-backup service path building algorithm (PBSP-Bld) for the KSFC and the failed service path restoring algorithm (FSP-Res) for the NSFC. The PBSP-Bld not only embeds nodes and links alternately based on greedy strategy to reduce the service latency of SFC, but also establishes bridging path between the primary and the backup service paths, which improves the speed of path switching and reduces the packet loss rate during path switching. Additionally, the FSP-Res finds the best re-embedding positions for failed nodes by means of the max-flow problem, which increases the number of recovered NSFCs. It also uses the modified version of Dijkstras shortest path algorithm to select re-embedding paths with low latency. Experimental results demonstrate the good performance of the heuristic algorithms under different network conditions. Moreover, the proposed method keeps the success ratio of running SFC above 592% under the simulated network environment.
  • 期刊类型引用(8)

    1. 刘金全,张铮,陈自东,曹晟. 一种基于联邦学习参与方的投毒攻击防御方法. 计算机应用研究. 2024(04): 1171-1176 . 百度学术
    2. 杨文彬. 基于联邦学习的移动边缘节点计算的数据智能分类问题研究. 自动化与仪器仪表. 2024(06): 19-23 . 百度学术
    3. 符太东,李育强. 基于联邦学习算法的复杂网络大数据隐私保护. 计算机仿真. 2024(06): 498-502 . 百度学术
    4. 孙静,彭勇刚,倪旖旎,韦巍,蔡田田,习伟. 基于改进联邦学习算法的电力负荷预测方法. 高电压技术. 2024(07): 3039-3049 . 百度学术
    5. 乐俊青,谭州勇 ,张迪 ,刘高 ,向涛 ,廖晓峰 . 面向车联网数据持续共享的安全高效联邦学习. 计算机研究与发展. 2024(09): 2199-2212 . 本站查看
    6. 孙钰,刘霏霏,李大伟,刘建伟. 联邦学习拜占庭攻击与防御研究综述. 网络空间安全科学学报. 2023(01): 17-37 . 百度学术
    7. 康孟珍,王秀娟,李冬,王旭伟,王浩宇,樊梦涵,许钰林,王飞跃. 基于联邦学习的分布式农业组织. 智能科学与技术学报. 2022(02): 288-297 . 百度学术
    8. 王文鑫,柳彩云,岳梓岩. 基于联邦学习的工业互联网结构优化. 工业信息安全. 2022(01): 103-107 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  974
  • HTML全文浏览量:  1
  • PDF下载量:  540
  • 被引次数: 14
出版历程
  • 发布日期:  2018-03-31

目录

    /

    返回文章
    返回