• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

视频实时评论的深度语义表征方法

吴法民, 吕广奕, 刘淇, 何明, 常标, 何伟栋, 钟辉, 张乐

吴法民, 吕广奕, 刘淇, 何明, 常标, 何伟栋, 钟辉, 张乐. 视频实时评论的深度语义表征方法[J]. 计算机研究与发展, 2019, 56(2): 293-305. DOI: 10.7544/issn1000-1239.2019.20170752
引用本文: 吴法民, 吕广奕, 刘淇, 何明, 常标, 何伟栋, 钟辉, 张乐. 视频实时评论的深度语义表征方法[J]. 计算机研究与发展, 2019, 56(2): 293-305. DOI: 10.7544/issn1000-1239.2019.20170752
Wu Famin, Lü Guangyi, Liu Qi, He Ming, Chang Biao, He Weidong, Zhong Hui, Zhang Le. Deep Semantic Representation of Time-Sync Comments for Videos[J]. Journal of Computer Research and Development, 2019, 56(2): 293-305. DOI: 10.7544/issn1000-1239.2019.20170752
Citation: Wu Famin, Lü Guangyi, Liu Qi, He Ming, Chang Biao, He Weidong, Zhong Hui, Zhang Le. Deep Semantic Representation of Time-Sync Comments for Videos[J]. Journal of Computer Research and Development, 2019, 56(2): 293-305. DOI: 10.7544/issn1000-1239.2019.20170752
吴法民, 吕广奕, 刘淇, 何明, 常标, 何伟栋, 钟辉, 张乐. 视频实时评论的深度语义表征方法[J]. 计算机研究与发展, 2019, 56(2): 293-305. CSTR: 32373.14.issn1000-1239.2019.20170752
引用本文: 吴法民, 吕广奕, 刘淇, 何明, 常标, 何伟栋, 钟辉, 张乐. 视频实时评论的深度语义表征方法[J]. 计算机研究与发展, 2019, 56(2): 293-305. CSTR: 32373.14.issn1000-1239.2019.20170752
Wu Famin, Lü Guangyi, Liu Qi, He Ming, Chang Biao, He Weidong, Zhong Hui, Zhang Le. Deep Semantic Representation of Time-Sync Comments for Videos[J]. Journal of Computer Research and Development, 2019, 56(2): 293-305. CSTR: 32373.14.issn1000-1239.2019.20170752
Citation: Wu Famin, Lü Guangyi, Liu Qi, He Ming, Chang Biao, He Weidong, Zhong Hui, Zhang Le. Deep Semantic Representation of Time-Sync Comments for Videos[J]. Journal of Computer Research and Development, 2019, 56(2): 293-305. CSTR: 32373.14.issn1000-1239.2019.20170752

视频实时评论的深度语义表征方法

基金项目: 国家重点研发计划项目(2016YFB1000904);国家自然科学基金项目(61672483,U1605251);中国科学院青年创新促进会会员专项基金项目(2014299)
详细信息
  • 中图分类号: TP181

Deep Semantic Representation of Time-Sync Comments for Videos

  • 摘要: 随着互联网技术的进步,以视频实时评论为代表的众包短文本(又称弹幕)逐渐流行,对在线媒体分享平台和娱乐产业都带来了重要影响.针对此类短文本展开研究,为推荐系统以及人工智能等领域的发展提供了新的机遇,在各行各业都具有巨大价值.然而在弹幕带来机遇的同时,理解和分析这种面向视频的众包短文本也面临诸多挑战:视频实时评论的高噪声、不规范表达和隐含语义等特性,使得传统自然语言处理(natural language processing, NLP)技术具有很大局限性,因此亟需一种容错性强、能刻画短文本深度语义的理解方法.针对以上挑战,在“相近时间段内的视频实时评论具有相似语义”假设的基础上,提出了一种基于循环神经网络(recurrent neural network, RNN)的深度语义表征模型.该模型由于引入了字符级别的循环神经网络,避免了弹幕噪声对文本分词带来的影响.通过使用神经网络,使所得的语义向量能够表达弹幕的隐含语义.在此基础上,进一步设计了基于语义检索的弹幕解释框架,同时作为对语义表征结果的应用验证.最后,设计了多种对比方法,并采用不同指标对所提出的模型进行充分的验证.该模型能够精准地刻画弹幕短文本的语义,也证明了关于弹幕相关假设的合理性.
    Abstract: With the development of Internet, crowdsourcing short texts such as time-sync comments for videos are of significant importance for online media sharing platforms and leisure industry. It also provides a new research opportunity for the evolution of recommender system, artificial intelligence and so on, which have tremendous values for every walk of life. At the same time, there are many challenges for crowdsourcing short text analysis, because of its high noise, non-standard expressions and latent semantic implication. These have limited the application of traditional natural language processing (NLP) techniques, thus it needs a novel short text understanding method which is of high fault tolerance, and can capture the deep semantics. To this end, this paper proposes a deep semantic representation model based on recurrent neural network (RNN). It can avoid the effect of noise on text segmentation by exploiting the character-based RNN. To achieve the semantic representation, we apply the neural network to represent the latent semantics such that the outputted semantic vectors can deeply reflect the time-sync comments. Then we further design a time-sync comment explanation framework based on semantic retrieval, used for the validation of semantic representation. Finally, we compare them with others baselines, and apply many measures to validate the proposed model. The experimental results show that model can capture the semantics in these short texts more precisely, and the assumptions related to time-sync comments are reasonable.
  • 期刊类型引用(8)

    1. 袁振,侯玉亮,杜宇慧. 面向脑核磁共振识别运动任务的门控循环单元方法. 中国图象图形学报. 2023(02): 589-600 . 百度学术
    2. 姚志武,侯丽娜,文茂华. 基于LSTM算法的大坝坝体渗透压力预测. 水利建设与管理. 2023(08): 54-59 . 百度学术
    3. 潘丹,林灵婷,翁凌雯,李棋,常尧. 基于时空双分支网络的行为检测与识别技术研究. 电子设计工程. 2023(18): 191-195 . 百度学术
    4. 赵佳佳,刘磊. 鱼类集群运动的注意力模型研究. 软件导刊. 2022(06): 36-40 . 百度学术
    5. 郭勇,赵康,潘力. 结合改进Bi-LSTM和CNN的文本情感分析. 信息技术. 2021(02): 50-55 . 百度学术
    6. 高瑞,郝乐,刘宝,文静怡,陈宇航. 基于改进ResNet网络的井下钻杆计数方法. 工矿自动化. 2020(10): 32-37 . 百度学术
    7. 许春冬,徐琅,周滨,凌贤鹏. 单通道语音增强技术的研究现状与发展趋势. 江西理工大学学报. 2020(05): 55-64 . 百度学术
    8. 何永勃,李明伟. 基于循环神经网络的飞机货舱火灾快速识别算法. 消防科学与技术. 2020(11): 1490-1494 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  1402
  • HTML全文浏览量:  1
  • PDF下载量:  654
  • 被引次数: 22
出版历程
  • 发布日期:  2019-01-31

目录

    /

    返回文章
    返回