Multi-Model Data Fusion Based Unobtrusive Identification Method
-
摘要: 传统的步态识别技术在智能终端设备风险控制领域的应用还存在一些问题,已有的方案是通过加速度、陀螺仪等多传感器对步态进行身份识别与验证.由于现有的识别方法设置了许多限制条件,给该技术的使用与推广俱造成了困难.例如:需要把传感器设备固定在脚踝、膝盖、腰部等位置,设备有指定的朝向,用户做特定的动作.通过步态进行身份识别与验证的技术应用到风险控制领域需要一套完整可靠的系统架构,现有架构还存在较大问题.因此,提出一种与位置、行为无关的非干扰的身份识别与验证方法,该方法仅使用加速度传感器,并以此方法为核心建立了一套完整的系统实现架构,该架构方法的实现提高了系统的整体精度与可用性.首先对用户的行为及设备所在的位置进行预测;然后针对性地进行步态分析与识别.实验中仅使用智能手机中内置的加速度传感器采集数据,最后对步态进行位置无关的分析与识别最重确定用户身份,从而起到降低智能手机使用风险提高安全系数的作用.实验结果表明设计的系统架构有利于系统整体精度的提升,且该方法具有较高的识别率和极低的假阳率(false positive rate, FPR),且在非干扰用户的情况下提高了APP和智能手机等智能终端设备的安全性.Abstract: The traditional gait recognition technology in the field of intelligent terminal equipment risk control still has some problems. The existing program is using accelerometer, gyroscope and other multi-sensor gait for identification and verification. Due to the existing identification methods set a number of restrictions, hinder the use and promotion of this technology. For example: the sensor device needs to be fixed at the same position as the ankle, knee, waist and so on; the device has a designated orientation; the user does a specific action. In addition, the application of the technology of identity verification and verification through gait to the field of risk control requires a complete and reliable system architecture. There is still a big problem with the existing architecture. Therefore, this paper presents a non-interference and location-independent identification and verification method that uses only accelerometers and builds a complete set of system implementation architecture with this method as the core. The implementation of this architecture method has improved the overall system accuracy and availability. Firstly, the user’s behavior and the location of the device are predicted; then the gait analysis and identification are carried out. In this experiment, we only use the built-in accelerometer in the smart phone to collect data, finally position-independent gait analysis and identification to identify the user to determine which is the most important, so as to reduce the risk of using smart phones and improve the safety factor. The experimental results show that the system architecture designed in this paper is conducive to the improvement of overall system accuracy. The method has the characteristics of high recognition rate and very low FPR (false positive rate), and improves the APP and the smartphone in the case of non-interfering users such as intelligent terminal equipment security.
-
Keywords:
- human-computer interaction /
- safety /
- gait /
- risk control /
- noninterference
-
-
期刊类型引用(14)
1. 孙造诣,许苇婧,徐亮,李宏汀. 调节定向对App用户隐私披露的影响. 心理科学进展. 2023(07): 1160-1171 . 百度学术
2. 王宏. 基于知识图谱的中外用户隐私研究对比分析. 大学图书情报学刊. 2023(04): 136-145 . 百度学术
3. 冯晗,伊华伟,李晓会,李锐. 推荐系统的隐私保护研究综述. 计算机科学与探索. 2023(08): 1814-1832 . 百度学术
4. 李静,赵青杉,高媛. 基于机器学习的大数据隐私非交互式查询研究. 计算机仿真. 2023(08): 334-338 . 百度学术
5. 刘振,吴宇. 基于区块链的自适应权重趋势感知联邦学习方案. 电子设计工程. 2023(24): 75-80 . 百度学术
6. 雷可为,王小辉. 基于微信公众平台的景区个性化推荐系统设计. 信息技术. 2022(01): 56-61 . 百度学术
7. 朱智韬,司世景,王健宗,肖京. 联邦推荐系统综述. 大数据. 2022(04): 105-132 . 百度学术
8. 张洪磊,李浥东,邬俊,陈乃月,董海荣. 基于隐私保护的联邦推荐算法综述. 自动化学报. 2022(09): 2142-2163 . 百度学术
9. 胡至洵,杜宇,刘潇月. 基于用户兴趣分类的书籍自动推荐系统设计. 现代电子技术. 2021(06): 58-62 . 百度学术
10. 马苏杭,龙士工,刘海,彭长根,李思雨. 面向高维数据发布的个性化差分隐私算法. 计算机系统应用. 2021(04): 131-138 . 百度学术
11. 马黛露丝,朱海萍,田锋,冯沛,陈妍,计湘婷,李玉杰. 一种权衡性能与隐私保护的推荐算法. 西安交通大学学报. 2021(07): 117-123 . 百度学术
12. 邓翔天,钱海峰. 标准模型下的灵活细粒度授权密文一致性检测方案. 计算机研究与发展. 2021(10): 2222-2237 . 本站查看
13. 周俊,方国英,吴楠. 联邦学习安全与隐私保护研究综述. 西华大学学报(自然科学版). 2020(04): 9-17 . 百度学术
14. 周艳榕. 基于个性化特征的电子商务智能推荐系统. 现代电子技术. 2020(19): 155-158+162 . 百度学术
其他类型引用(26)
计量
- 文章访问数: 849
- HTML全文浏览量: 7
- PDF下载量: 304
- 被引次数: 40