• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于二元Weibull分布的非下采样Shearlet域图像水印算法

牛盼盼, 王向阳, 杨思宇, 文涛涛, 杨红颖

牛盼盼, 王向阳, 杨思宇, 文涛涛, 杨红颖. 基于二元Weibull分布的非下采样Shearlet域图像水印算法[J]. 计算机研究与发展, 2019, 56(7): 1454-1469. DOI: 10.7544/issn1000-1239.2019.20180278
引用本文: 牛盼盼, 王向阳, 杨思宇, 文涛涛, 杨红颖. 基于二元Weibull分布的非下采样Shearlet域图像水印算法[J]. 计算机研究与发展, 2019, 56(7): 1454-1469. DOI: 10.7544/issn1000-1239.2019.20180278
Niu Panpan, Wang Xiangyang, Yang Siyu, Wen Taotao, Yang Hongying. A Blind Watermark Decoder in Nonsubsampled Shearlet Domain Using Bivariate Weibull Distribution[J]. Journal of Computer Research and Development, 2019, 56(7): 1454-1469. DOI: 10.7544/issn1000-1239.2019.20180278
Citation: Niu Panpan, Wang Xiangyang, Yang Siyu, Wen Taotao, Yang Hongying. A Blind Watermark Decoder in Nonsubsampled Shearlet Domain Using Bivariate Weibull Distribution[J]. Journal of Computer Research and Development, 2019, 56(7): 1454-1469. DOI: 10.7544/issn1000-1239.2019.20180278
牛盼盼, 王向阳, 杨思宇, 文涛涛, 杨红颖. 基于二元Weibull分布的非下采样Shearlet域图像水印算法[J]. 计算机研究与发展, 2019, 56(7): 1454-1469. CSTR: 32373.14.issn1000-1239.2019.20180278
引用本文: 牛盼盼, 王向阳, 杨思宇, 文涛涛, 杨红颖. 基于二元Weibull分布的非下采样Shearlet域图像水印算法[J]. 计算机研究与发展, 2019, 56(7): 1454-1469. CSTR: 32373.14.issn1000-1239.2019.20180278
Niu Panpan, Wang Xiangyang, Yang Siyu, Wen Taotao, Yang Hongying. A Blind Watermark Decoder in Nonsubsampled Shearlet Domain Using Bivariate Weibull Distribution[J]. Journal of Computer Research and Development, 2019, 56(7): 1454-1469. CSTR: 32373.14.issn1000-1239.2019.20180278
Citation: Niu Panpan, Wang Xiangyang, Yang Siyu, Wen Taotao, Yang Hongying. A Blind Watermark Decoder in Nonsubsampled Shearlet Domain Using Bivariate Weibull Distribution[J]. Journal of Computer Research and Development, 2019, 56(7): 1454-1469. CSTR: 32373.14.issn1000-1239.2019.20180278

基于二元Weibull分布的非下采样Shearlet域图像水印算法

基金项目: 国家自然科学基金项目(61472171,61701212);中国博士后科学基金项目(2017M621135,2018T110220);大连市高层次人才创新支持计划项目(2017RQ055)
详细信息
  • 中图分类号: TP309.2

A Blind Watermark Decoder in Nonsubsampled Shearlet Domain Using Bivariate Weibull Distribution

  • 摘要: 不可感知性、鲁棒性、水印容量是衡量数字图像水印算法优劣的最重要指标,且三者存在固有的相互矛盾关系,可保持不可感知性、鲁棒性、水印容量之间良好平衡的图像水印方法研究是一项富有挑战性的工作.以非下采样Shearlet变换(nonsubsampled Shearlet transform, NSST)与二元Weibull分布理论为基础,提出了一种基于二元Weibull统计建模的非下采样Shearlet域数字图像水印算法.1)构造出基于非线性单调函数的自适应高阶水印嵌入强度函数;2)根据NSST域尺度间相关性,利用二元Weibull边缘分布对NSST域高熵块奇异值进行统计建模,并估计出二元Weibull统计模型参数;3)结合NSST域二元Weibull边缘分布模型与最大似然决策理论,构造出二元数字水印检测器并盲提取水印信息.仿真实验结果表明:该算法可以较好地获得不可感知性、鲁棒性、水印容量之间的良好平衡.
    Abstract: Digital image watermarking has become a necessity in many applications such as data authentication, broadcast monitoring on the Internet and ownership identification. There are three indispensable, yet contradictory requirements for a watermarking scheme: perceptual transparency, watermark capacity, and robustness against attacks. Therefore, a watermarking scheme should provide a trade-off among these requirements from the information-theoretic perspective. Improving the ability of imperceptibility, watermark capacity, and robustness at the same time has been a challenge for all image watermarking algorithms. In this paper, we propose a novel digital image watermark decoder in the nonsubsampled Shearlet transform (NSST) domain, wherein a PDF (probability density function) based on the bivariate Weibull distribution is used. In the presented scheme, we construct the nonlinear monotone function based adaptive high-order watermark embedding strength functions by employing the human visual system (HVS) properties, and embed watermark data into the singular values of high entropy NSST coefficients blocks. At the watermark receiver, the singular values of high entropy NSST coefficients blocks are firstly modeled by employing the bivariate Weibull distribution according to their inter-scale dependencies, then the statistical model parameters of bivariate Weibull distribution are estimated effectively, and finally a blind watermark extraction approach is developed using the maximum likelihood method based on the bivariate Weibull distribution. The experimental results show that the proposed blind watermark decoder is superior to other decoders in terms of imperceptibility and robustness.
  • 期刊类型引用(10)

    1. 徐怡,陶强. 划分序乘积空间约简算法研究. 系统工程理论与实践. 2025(02): 554-570 . 百度学术
    2. 刘长顺,刘炎,宋晶晶,徐泰华. 基于论域离散度的属性约简算法. 山东大学学报(理学版). 2023(05): 26-35+52 . 百度学术
    3. 张清华,艾志华,张金镇. 融合密度与邻域覆盖约简的分类方法. 陕西师范大学学报(自然科学版). 2022(03): 33-42 . 百度学术
    4. 张雨新,孙达明,李飞. 基于粒化单调的不完备混合型数据增量式属性约简算法. 计算机应用与软件. 2021(03): 279-286 . 百度学术
    5. 邹丽,任思远,杨光,杨鑫华. 基于改进条件邻域熵的接头疲劳寿命影响因素分析. 焊接学报. 2021(11): 43-50+99-100 . 百度学术
    6. 刘正,陈雪勤,张书锋. 基于最小化邻域互信息的邻域熵属性约简算法. 微电子学与计算机. 2020(03): 26-32 . 百度学术
    7. 陈帅,张贤勇,唐玲玉,姚岳松. 邻域互补信息度量及其启发式属性约简. 数据采集与处理. 2020(04): 630-641 . 百度学术
    8. 周艳红,张强. 基于三层粒结构的三支邻域熵. 数学的实践与认识. 2020(14): 83-93 . 百度学术
    9. 亓慧,史颖. 不同度量下集成属性选择器的对比研究. 山西大学学报(自然科学版). 2019(04): 848-853 . 百度学术
    10. 周艳红,张迪,张强. 基于单调信息度量的特定类属性约简. 内江师范学院学报. 2019(12): 35-39 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  951
  • HTML全文浏览量:  2
  • PDF下载量:  336
  • 被引次数: 21
出版历程
  • 发布日期:  2019-06-30

目录

    /

    返回文章
    返回