Lab Indicator Standardization in a Regional Medical Health Platform
-
摘要: 由于没有完整可用的指标同义词库以进行指标映射,各家医院关于同一检验检查指标的不同称谓,已严重影响到了区域间医疗信息的互联共享,因而需要对检验检查指标进行标准化处理.这可以看作是一个实体对齐问题,但指标只有相应的取值和取值范围,难以像知识库实例匹配那般使用到属性信息,也不似实体链接那般拥有上下文信息,而且不存在一个标准知识库来提供所有指标的标准名称.针对以上问题,提出指标标准化算法,先根据指标字面特征进行聚类,再使用相似度特征和分块打分特征迭代地进行二分类映射.实验表明,最终的二分类映射,其F1-score可以达到85.27%,证明了该方法的有效性.Abstract: Due to the lack of a complete synonym list for indicator mapping, different hospitals may use different names for the same lab indicator. Lab indicator name discrepancy has greatly affected the medical information sharing and exchange among hospitals. It is becoming increasingly important to standardize the lab indicators. Such a problem can be seen as an entity alignment task to map different indicators into standard ones. However, a lab indicator only involves its name and value, not including any extra properties or contexts which is needed by existing knowledge base (KB) alignment or entity linking methods. More importantly, there exist no available standard KBs to provide standard indicator terms. Therefore, we cannot implement these existing methods directly. To solve the problem, in this paper, we present the first effort to work on lab indicator standardization. We propose a novel standardization method, which firstly clusters the indicators based on their names and abbreviations, and then iteratively employs a binary classification algorithm based on similarity features and partition score features for indicator mapping. Experimental results on the real-world medical data show that the final classification achieves a F1-score of 85.27%, which indicates that our method improves the quality and outperforms state-of-the-art approaches.
-
Keywords:
- regional medical health platform /
- lab indicator /
- standardization /
- clustering /
- classification
-
-
期刊类型引用(25)
1. 吴仁彪,张振驰,贾云飞,乔晗. 云平台下基于截止时间的自适应调度策略. 计算机应用. 2023(01): 176-184 . 百度学术
2. 邹文仲,邓力源,张高峰,王凌梓,章金峰. 基于调度云平台通用分布式架构实践. 南方电网技术. 2023(09): 20-28 . 百度学术
3. 许源佳,吴恒,杨晨,吴悦文,张文博,王焘. 面向状态可变数据流的集群调度综述. 计算机学报. 2022(05): 973-992 . 百度学术
4. 陈旭辉,刘洋,张鸿,高鹏,许竹霞. Linux大规模集群应用管理模型的研究及实现. 电子设计工程. 2022(10): 17-21+26 . 百度学术
5. 谢志强,周伟,杨静. 考虑层级调度次序的资源协同综合调度算法. 计算机集成制造系统. 2022(11): 3391-3402 . 百度学术
6. 刘刚. 城市智慧社区安防管理系统研究. 哈尔滨职业技术学院学报. 2022(06): 120-122 . 百度学术
7. 毛安琪,汤小春,丁朝,李战怀. 集中式集群资源调度框架的可扩展性优化. 计算机研究与发展. 2021(03): 497-512 . 本站查看
8. 陈吉宁. 基于动态增容的政务大数据资源调度优化系统设计. 自动化技术与应用. 2021(04): 58-61+72 . 百度学术
9. 赵杉. 云平台安全监控大数据集群调度容错控制仿真. 计算机仿真. 2021(07): 486-490 . 百度学术
10. 赵全,汤小春,朱紫钰,毛安琪,李战怀. 大规模短时间任务的低延迟集群调度框架. 计算机应用. 2021(08): 2396-2405 . 百度学术
11. 鲁小艳. 基于集群计算的高校艺术专业理论教学与实践模式. 科技风. 2021(33): 129-132 . 百度学术
12. 王晓霞,孙德才. 大数据处理中MapReduce框架的Q-sample算法设计. 现代计算机. 2021(36): 44-48 . 百度学术
13. 崔校郡. 新时期大数据分析与应用关键技术研究. 信息技术与信息化. 2020(01): 204-206 . 百度学术
14. 顾东虎. Hadoop云平台下基于P-WAP的大数据聚类挖掘算法. 长春师范大学学报. 2020(10): 29-35 . 百度学术
15. 姜一,刘菁,姚嵘. 基于智能感知的电力多元数据集群热点处理研究. 电子设计工程. 2020(21): 20-23+28 . 百度学术
16. 罗兰溪,柯行思,宋凯. 基于云平台的电力大数据变化趋势预测. 信息技术. 2020(11): 60-65 . 百度学术
17. 孙卫红,吕文新. 区域集群下板材订单配置模型及算法研究. 运筹与管理. 2020(12): 38-42+50 . 百度学术
18. 庞慧,刘丽娟,周丽莉. 有效网络大数据流多任务传输调度方法. 计算机仿真. 2020(12): 391-395 . 百度学术
19. 朱晔,姜志博,田浩,陶汉涛,吴大伟,张磊,何君. 电网雷电大数据采集系统研发. 高压电器. 2019(04): 160-168 . 百度学术
20. 刘甜. 大数据时代下计算机软件技术的应用探索. 计算机产品与流通. 2019(06): 20 . 百度学术
21. 邵必林,王莎莎. 基于负载预测的HDFS动态负载均衡改进算法. 探测与控制学报. 2019(02): 75-80 . 百度学术
22. 李维虎,张顶山,崔慧明,周龙,朱志挺,谢挺. 数据中心网络coflow调度机制结构构建及仿真. 电子测量技术. 2019(10): 78-81 . 百度学术
23. 黄高攀,何金陵,庄岭,张利. 面向应用检测任务的负载均衡算法研究. 计算技术与自动化. 2019(01): 71-76 . 百度学术
24. 郜广兰,徐晶晶,任刚,朱命冬,张超. 面向高校科研人员的高性能集群计算科研平台建设研究. 河南机电高等专科学校学报. 2019(03): 4-7 . 百度学术
25. 陈湉,林勇. 大数据分析背景下地震后紧急物流资源调度模型设计. 地震工程学报. 2018(06): 1343-1349 . 百度学术
其他类型引用(14)
计量
- 文章访问数: 969
- HTML全文浏览量: 4
- PDF下载量: 424
- 被引次数: 39