• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于深度卷积生成对抗网络和拓展近邻重排序的行人重识别

戴臣超, 王洪元, 倪彤光, 陈首兵

戴臣超, 王洪元, 倪彤光, 陈首兵. 基于深度卷积生成对抗网络和拓展近邻重排序的行人重识别[J]. 计算机研究与发展, 2019, 56(8): 1632-1641. DOI: 10.7544/issn1000-1239.2019.20190195
引用本文: 戴臣超, 王洪元, 倪彤光, 陈首兵. 基于深度卷积生成对抗网络和拓展近邻重排序的行人重识别[J]. 计算机研究与发展, 2019, 56(8): 1632-1641. DOI: 10.7544/issn1000-1239.2019.20190195
Dai Chenchao, Wang Hongyuan, Ni Tongguang, Chen Shoubing. Person Re-Identification Based on Deep Convolutional Generative Adversarial Network and Expanded Neighbor Reranking[J]. Journal of Computer Research and Development, 2019, 56(8): 1632-1641. DOI: 10.7544/issn1000-1239.2019.20190195
Citation: Dai Chenchao, Wang Hongyuan, Ni Tongguang, Chen Shoubing. Person Re-Identification Based on Deep Convolutional Generative Adversarial Network and Expanded Neighbor Reranking[J]. Journal of Computer Research and Development, 2019, 56(8): 1632-1641. DOI: 10.7544/issn1000-1239.2019.20190195
戴臣超, 王洪元, 倪彤光, 陈首兵. 基于深度卷积生成对抗网络和拓展近邻重排序的行人重识别[J]. 计算机研究与发展, 2019, 56(8): 1632-1641. CSTR: 32373.14.issn1000-1239.2019.20190195
引用本文: 戴臣超, 王洪元, 倪彤光, 陈首兵. 基于深度卷积生成对抗网络和拓展近邻重排序的行人重识别[J]. 计算机研究与发展, 2019, 56(8): 1632-1641. CSTR: 32373.14.issn1000-1239.2019.20190195
Dai Chenchao, Wang Hongyuan, Ni Tongguang, Chen Shoubing. Person Re-Identification Based on Deep Convolutional Generative Adversarial Network and Expanded Neighbor Reranking[J]. Journal of Computer Research and Development, 2019, 56(8): 1632-1641. CSTR: 32373.14.issn1000-1239.2019.20190195
Citation: Dai Chenchao, Wang Hongyuan, Ni Tongguang, Chen Shoubing. Person Re-Identification Based on Deep Convolutional Generative Adversarial Network and Expanded Neighbor Reranking[J]. Journal of Computer Research and Development, 2019, 56(8): 1632-1641. CSTR: 32373.14.issn1000-1239.2019.20190195

基于深度卷积生成对抗网络和拓展近邻重排序的行人重识别

基金项目: 国家自然科学基金项目(61572085,61502058,61806026);江苏省自然科学基金项目(BK20180956)
详细信息
  • 中图分类号: TP391.41

Person Re-Identification Based on Deep Convolutional Generative Adversarial Network and Expanded Neighbor Reranking

  • 摘要: 行人重识别任务旨在识别不相交摄像头视图下的相同行人.这项任务极具挑战性,尤其是当数据集中每个行人仅仅有几张图片时.针对行人重识别数据集中行人图片数量不足的问题,提出一个从原始数据集中生成额外训练数据的方法.在这项工作之中存在2个挑战:1)如何从原始数据集之中获取更多的训练数据;2)如何处理这些新生成的训练数据.使用深度卷积生成对抗网络来生成额外的无标签行人图片,并采用标签平滑正则化来处理这些新生成的无标签行人图片.为了进一步提升行人重识别准确度,提出了一种新的无监督重排序框架.此框架既不需要为每组图像对重新计算新的排序列表,也不需要任何人工交互或标签信息.在Market-1501,CUHK03和DukeMTMC-reID数据集上的实验验证了所提方法的有效性.
    Abstract: Person Re-Identification (Re-ID) focuses on identifying the same person among disjoint camera views. This task is highly challenging, especially when there exists only several images per person in the database. Aiming at the problem of insufficient number of person images in person re-identification dataset, a method that generates extra training data from the original dataset is proposed. There are two challenges in this work, one is how to get more training data from the original training set, and the other is how to deal with these newly generated training data. The deep convolutional generative adversarial network is used to generate extra unlabeled person images and label smoothing regularization is used to process these newly generated unlabeled person images. In order to further improve the accuracy of person re-identification, a new unsupervised reranking framework is proposed. This framework neither requires to recalculate a new sorted list for each image pairs nor requires any human interaction or label information. Experiments on the datasets Market-1501, CUHK03, and DukeMTMC-reID verify the effectiveness of the proposed method.
  • 期刊类型引用(10)

    1. 汤书苑,周一青,李锦涛,刘畅,石晶林. 基于特征校准的双注意力遮挡行人检测器. 西安电子科技大学学报. 2024(06): 25-39 . 百度学术
    2. 曹玉东,陈冬昊,曹睿,赵朗. 融合Mask R-CNN的在线多目标行人跟踪方法. 计算机工程与科学. 2023(07): 1216-1225 . 百度学术
    3. 曹健,陈怡梅,李海生,蔡强. 基于深度学习的道路小目标检测综述. 计算机工程. 2023(10): 1-12 . 百度学术
    4. 徐放,苗夺谦,张红云. 基于多粒度的Transformer目标检测算法. 计算机科学. 2023(11): 143-150 . 百度学术
    5. 陈立,张帆,郭威,黄赟. 面向遥感图像的多阶段特征融合目标检测方法. 电子学报. 2023(12): 3520-3528 . 百度学术
    6. 宋思雨,苗夺谦. 基于多粒度空间混乱的细粒度图像分类算法. 智能系统学报. 2022(01): 144-150 . 百度学术
    7. 潘云磊. 基于改进蚁群算法的行人运动特征跟踪提取方法. 河北北方学院学报(自然科学版). 2022(07): 1-6 . 百度学术
    8. 欧群雍,谭同德,袁红斌. 结合CNN和Bi-LSTM的多行人目标检测跟踪方法. 无线电工程. 2022(09): 1633-1641 . 百度学术
    9. 袁小鑫,胡军,黄永洪. 针对目标检测器的假阳性对抗样本. 计算机研究与发展. 2022(11): 2534-2548 . 本站查看
    10. 史进玲,张江维,程菊明. 多标记的不完备多粒度决策系统的最优粒度选择. 许昌学院学报. 2021(02): 103-108 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  1353
  • HTML全文浏览量:  4
  • PDF下载量:  619
  • 被引次数: 25
出版历程
  • 发布日期:  2019-07-31

目录

    /

    返回文章
    返回