A Fast Traffic Sign Detection Algorithm Based on Three-Scale Nested Residual Structures
-
摘要: 智能驾驶对交通标志自动检测的实时性及鲁棒性有着极高要求.目标检测中YOLOv3-tiny检测算法是轻量网络,实时性好、但准确率不高.将YOLOv3-tiny检测算法作为基础网络,提出了一种三尺度嵌套残差结构的交通标志快速检测算法.首先,在基础网络上采用逐像素相加的跨层连接,并未增加特征图的通道数,同时网络中形成1个小残差结构.其次,通过同样的跨层连接方式,增加了1层空间分辨率更高的预测输出,使得该尺度输出包含更丰富的空间信息,进而构成大残差结构.最终,将2个残差结构进行嵌套,形成了1个三尺度预测的嵌套残差网络模型,使得Tiny检测算法的部分主网络位于这2个残差结构中,起到3次调参的作用.实验结果表明:提出的算法能够快速鲁棒地检测真实场景中的交通标志.在德国交通标志检测数据集(German traffic sign detection benchmark, GTSDB)上交通标志总F\-1值为91.77%、检测时间为5ms;在长沙理工大学中国交通标志检测数据集(CSUST Chinese traffic sign detection benchmark, CCTSDB)上指示、禁令、警告三大类交通标志F\-1值分别为92.41%,93.91%,92.03%,检测时间为5ms.Abstract: Automatic driving technology has high requirements for real-time and robustness of traffic sign detection in real world. The YOLOv3-tiny model is a lightweight network with good real-time performance in the object detection, but its accuracy is not high. In this paper, we use YOLOv3-tiny as the basic network and propose a fast traffic sign detection algorithm with three-scale nested residual structure. Firstly, shortcut based on pixel by pixel addition is employed in the YOLOv3-tiny network. It does not increase the number of feature map channels, and a small residual structure is formed in the network at the same time. Secondly, the predictive output with higher spatial resolution is also added through the shortcut, which contains more abundant spatial information, thus forming a large residual structure. Finally, the two residual structures are nested to form a three-scale predictive nested residual network, which makes the main network of Tiny located in these two residual structures and the parameters can be adjusted three times. The results show that the proposed algorithm can quickly and robustly detect traffic signs in real scenes. The F\-1 value of total traffic signs achieves 91.77% on German traffic sign detection benchmark and the detection time is 5ms. On CSUST Chinese traffic sign detection benchmark, F\-1 values of the Mandatory, the Prohibitory and the Warning are 92.41%, 93.91% and 92.03% respectively, and the detection time is 5ms.
-
-
期刊类型引用(10)
1. 徐怡,陶强. 划分序乘积空间约简算法研究. 系统工程理论与实践. 2025(02): 554-570 . 百度学术
2. 刘长顺,刘炎,宋晶晶,徐泰华. 基于论域离散度的属性约简算法. 山东大学学报(理学版). 2023(05): 26-35+52 . 百度学术
3. 张清华,艾志华,张金镇. 融合密度与邻域覆盖约简的分类方法. 陕西师范大学学报(自然科学版). 2022(03): 33-42 . 百度学术
4. 张雨新,孙达明,李飞. 基于粒化单调的不完备混合型数据增量式属性约简算法. 计算机应用与软件. 2021(03): 279-286 . 百度学术
5. 邹丽,任思远,杨光,杨鑫华. 基于改进条件邻域熵的接头疲劳寿命影响因素分析. 焊接学报. 2021(11): 43-50+99-100 . 百度学术
6. 刘正,陈雪勤,张书锋. 基于最小化邻域互信息的邻域熵属性约简算法. 微电子学与计算机. 2020(03): 26-32 . 百度学术
7. 陈帅,张贤勇,唐玲玉,姚岳松. 邻域互补信息度量及其启发式属性约简. 数据采集与处理. 2020(04): 630-641 . 百度学术
8. 周艳红,张强. 基于三层粒结构的三支邻域熵. 数学的实践与认识. 2020(14): 83-93 . 百度学术
9. 亓慧,史颖. 不同度量下集成属性选择器的对比研究. 山西大学学报(自然科学版). 2019(04): 848-853 . 百度学术
10. 周艳红,张迪,张强. 基于单调信息度量的特定类属性约简. 内江师范学院学报. 2019(12): 35-39 . 百度学术
其他类型引用(11)
计量
- 文章访问数: 1350
- HTML全文浏览量: 7
- PDF下载量: 620
- 被引次数: 21